فیتیله کردن در نوار کاغذی – Wicking in a Paper Strip

5/5 - (1 امتیاز)

این مثال فتیله را در یک محیط متخلخل مدل می کند. فتیله پدیده ای است که هنگامی رخ می دهد که یک ماده متخلخل خشک با یک سیال در تماس باشد: به دلیل نیروهای مویرگی، سیال را جذب می کند. جذب تا رسیدن به تعادل ادامه می یابد که در آن نیروهای گرانشی نیروهای مویرگی را متعادل می کنند.

تجزیه و تحلیل ساختارهای متخلخل در مقیاس میکروسکوپی – Analyzing Porous Structures on the Microscopic Scale

5/5 - (1 امتیاز)

مدل سازی جریان از طریق سازه های متخلخل واقع گرایانه به دلیل پیچیدگی خود سازه دشوار است. اغلب، حل و فصل میدان جریان با جزئیات امکان پذیر نیست. بنابراین، یک توصیف ماکروسکوپی از ساختار مقیاس منافذ، که از مقادیر متوسطی مانند تخلخل و نفوذپذیری استفاده می‌کند، برای سهولت مدل‌سازی حوزه‌های متخلخل استفاده می‌شود. این مثال میدان جریان را در مقیاس منافذ تجزیه و تحلیل می کند. سپس نتایج برای اعتبارسنجی و انطباق توصیف ماکروسکوپی پیوستار استفاده می‌شود، که به نوبه خود برای مدل‌سازی هندسه‌های متخلخل در مقیاس بزرگ استفاده می‌شود.

بهینه سازی سینک حرارتی میکروکانالی متخلخل – Optimization of a Porous Microchannel Heat Sink

5/5 - (1 امتیاز)

این مثال کارایی یک هیت سینک میکروکانالی متخلخل را نسبت به یک هیت سینک میکروکانال معمولی محاسبه می کند. مدل کاملاً پارامتری شده است. یک مطالعه پارامتر بر روی ضخامت بستر متخلخل برای تعیین پیکربندی بهینه استفاده می شود.

میکسر سه فاز – Three-Phase Mixer

5/5 - (1 امتیاز)

این مدل جداسازی و اختلاط یک سوسپانسیون با ذرات سبک و سنگین را شبیه سازی می کند. در ابتدا توزیع هر دو جمعیت ذره در سراسر سیال همگن است. قبل از شروع چرخش پروانه، سیال و دو جمعیت ذره تمایل به جدا شدن دارند زیرا ذرات سبک به بالای مخزن بالا می روند و ذرات سنگین در پایین رسوب می کنند. وقتی سوسپانسیون هم زده شد، سه فاز دوباره مخلوط می شوند.

جداکننده انتشار کنترل شده – Controlled Diffusion Separator

5/5 - (1 امتیاز)

این مدل یک میکروسل H شکل را شبیه سازی می کند که برای جداسازی کنترل شده با انتشار طراحی شده است. سلول دو جریان آرام مختلف را برای یک دوره زمانی کنترل شده در تماس قرار می دهد. سطح تماس به خوبی مشخص است و با کنترل سرعت جریان، می توان مقدار گونه هایی را که از طریق انتشار از یک جریان به جریان دیگر منتقل می شوند، کنترل کرد. با این روش می‌توان گونه‌های با نفوذ بالا را از گونه‌های با نفوذ کم جدا کرد.

به عنوان مثال، اگر گونه ای با نفوذ بالا از ورودی پایینی وارد شود، در ضخامت کانال افقی پخش می شود و از هر دو خروجی خارج می شود. گونه ای با نفوذ کم که وارد ورودی پایینی می شود در جریان خود باقی می ماند و همچنین از خروجی پایینی خارج می شود.

کالیبراسیون در برابر داده های TTT – Calibration Against TTT Data

5/5 - (1 امتیاز)

این مدل نحوه استفاده از ماژول پردازش فلز و ماژول بهینه سازی را برای کالیبره کردن پارامترهای یک مدل تبدیل فاز در برابر داده های TTT (تبدیل دمای زمانی) نشان می دهد.

ارزیابی دمای حجیم – Bulk temperature evaluation

5/5 - (1 امتیاز)

این آموزش نحوه استفاده از متغیرها و عملگرهای داخلی را برای ارزیابی دمای توده در امتداد هندسه ای مانند کانال، لوله یا دودکش در جریان غیر گرمایی به صورت دو بعدی و سه بعدی نشان می دهد. دمای توده ممکن است برای محاسبه ضریب انتقال حرارت برای یک جریان داخلی، به منظور تخمین راندمان یک مبدل حرارتی مورد نیاز باشد.

میانگین‌گیری مدل‌ها برای هدایت حرارتی مؤثر در محیط‌های متخلخل – Averaging Models for Effective Thermal Conductivity in Porous Media

5/5 - (1 امتیاز)

این آموزش میانگین‌گیری مدل‌های موجود در رابط انتقال حرارت در رسانه متخلخل را ارائه می‌کند که برای محاسبه رسانایی گرمایی مؤثر، زمانی که فرض تعادل حرارتی محلی ساخته می‌شود، استفاده می‌شود. مدل‌ها برای تخلخل‌های بین 0 تا 1 و نسبت هدایت حرارتی 50 بین فاز سیال و جامد مقایسه می‌شوند.

خنک کننده لامپ ال ای دی – LED Bulb Cooling

5/5 - (1 امتیاز)

این مدل سه حالت انتقال حرارت را توصیف می‌کند: رسانایی، همرفت، و تابش، همراه با جریان غیر گرمایی در یک هندسه واقعی که نشان‌دهنده یک لامپ و هوای اطراف است.

تراشه های LED گرما را از بین می برند. این مدل دمای تعادل القا شده توسط این منابع گرمایی، رسانایی در قطعات جامد، خنک‌کننده همرفتی به دلیل همرفت طبیعی و خنک‌سازی تابشی به محیط را محاسبه می‌کند.

ریخته گری پیوسته – روش ظرفیت حرارتی ظاهری – Continuous Casting — Apparent Heat Capacity Method

5/5 - (1 امتیاز)

این مثال فرآیند ریخته‌گری یک میله فلزی را از حالت مایع به جامد با استفاده از رابط چندفیزیکی جریان غیر همدما، که انتقال حرارت و جریان سیال را ترکیب می‌کند، مدل‌سازی می‌کند. این مدل جریان سیال و جامد و انتقال گرما، از جمله انتقال فاز از مذاب به جامد را توصیف می‌کند. این تغییر فاز باعث تغییرات تکانه، انتشار گرمای نهان و تغییر در خواص فیزیکی می شود.

نتایج مدل امکان بهینه‌سازی فرآیند را از نظر سرعت ریخته‌گری و خنک‌سازی فراهم می‌کند. این مدل همچنین اجازه می دهد تا شکل قالب بر میدان جریان فلز ذوب شده تأثیر بگذارد.