Structural Mechanics Module
 Verification Examples

Structural Mechanics Module Verification Examples

(C) 1998-2019 COMSOL

Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623, 991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; and 10,019,544. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement.
COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 5.5

Contact Information

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include:

- Support Center: www.comsol.com/support
- Product Download: www.comsol.com/product-download
- Product Updates: www.comsol.com/support/updates
- COMSOL Blog: www.comsol.com/blogs
- Discussion Forum: www.comsol.com/community
- Events: www.comsol.com/events
- COMSOL Video Gallery: www.comsol.com/video
- Support Knowledge Base: www.comsol.com/support/knowledgebase

Contact Information

Introduction

This Structural Mechanics Module Verification Manual consists of a set of benchmark models from various areas of structural mechanics and solid mechanics engineering. These are models with a theoretical solution or an solution from an established benchmark. Their purpose is to show the close agreement between the numerical solution obtained in COMSOL Multiphysics and the established benchmark data, so that you can gain confidence in the solutions provided when using the Structural Mechanics Module.

The models illustrate the use of the various structural-mechanics specific physics interfaces and study types. We have tried to cover a wide spectrum of the capabilities in the Structural Mechanics Module.

Note that the model descriptions in this book do not contain details on how to carry out every step in the modeling process. Before tackling these models, we urge you to first read the Structural Mechanics Module User's Guide. This book introduces you to the functionality in the module, reviews new features, and covers basic modeling techniques with tutorials and example models. Another book, the Structural Mechanics Module Applications Library, contains a large number of examples models from important application areas such as automotive applications, dynamics and vibration, fluid-structure interaction, fatigue analysis, and piezoelectric applications.

For more information on how to work with the COMSOL Multiphysics graphical user interface, please refer to the COMSOL Multiphysics Reference Manual or the Introduction to COMSOL Multiphysics manual. The book you are reading, the Structural Mechanics Module Verification Manual, provides details about a large number of ready-to-run models that provide numerical solutions to benchmark problems and
textbook examples with theoretical closed-form solutions. Each entry comes with theoretical background, a discussion about the results with a comparison to the benchmark data or the analytical solution, as well as instructions that illustrate how to set it up. The documentation for all models contains references to the textbook or technical publication from which we have collected the benchmark data or other verification data.

Finally note that we supply these models as COMSOL model files so you can open them in the COMSOL Desktop for immediate access, allowing you to follow along with these examples every step along the way.

Note: The full documentation set is available in electronic formats-PDF and HTMLthrough the COMSOL Documentation window after installation.

Comparison With Theoretical and Benchmark Results.

COMSOL Multiphysics and the Structural Mechanics Module use the finite element method to solve problems on a computational mesh using discrete numerical methods. Theoretical, closed-form solutions are typically based on continuous mathematical models and would require infinitely small mesh elements to reproduce exactly. These benchmark models, on the other hand, use relatively coarse meshes. The comparisons of the numerical solution in COMSOL Multiphysics to the benchmark results therefore allow for a small discrepancy. Comparisons to established benchmark results also show similar accuracy. Sources to these differences in the results include different solution methods, different discretization (computational grids), and other differences between the code or method used in the benchmark and the COMSOL Multiphysics code. Also note that the numerical solution might vary slightly depending on the computer platform that you use because different platforms have small differences handling floating-point operations.

COMSOL Software Verification and Quality Assurance Programs

COMSOL uses extensive manual and automatic testing to validate and verify the code. The benchmark models in this book make up a subset of the test cases that are part of a continuous automatic testing program. The automatic test program also frequently rebuilds all models in the COMSOL Application Libraries to ensure that they work and provide consistent solutions.

Block Pressing on Arch

Introduction

This conceptual example shows how to calculate critical points in models with contact. The model consists of a block modeled with the Solid Mechanics interface pressing on an arch modeled with the Shell interface and also exemplifies how to model the contact between a shell and a solid. During loading, the arch exhibits a snap-through behavior. The definition of the problem is based on a benchmark example from Ref. 1 .

Model Definition

The model geometry consists of an arch and a block as shown in Figure 1. Since the arch is modeled with the Shell interface, a 3D geometry is used. However, a 2D plane strain behavior is intended, and consequently symmetry conditions are applied to all boundaries and edges in the y direction to suppress any out-of-plane deformation.

Figure 1: Model geometry

Only contact without friction is considered and the augmented Lagrangian contact method is used.

A boundary load is applied the top surface of the block. Its magnitude is controlled by the monotonically increasing deflection of the arch, which makes it possible to track the entire load path, even though the force does not increase monotonically. The ends of the arch are fixed and the displacement of the block is constrained in the x direction.

Results and Discussion

Figure 2 depicts the deformed shape and the von Mises stress distribution at the last step of the simulation. The snap-through of the arch is clearly observed. The arch is represented by a shell dataset that shows both its top and bottom surface.

Figure 2: Deformation and von Mises stress at the final step.
The load versus deflection curve is shown in Figure 3. The load is in the figure represented by a dimensionless load factor. Two limit points can be observed, the first occurs for a load factor equal to 18 and a deflection of 36 mm . At this point the arch becomes unstable and a snap-through occurs. When the deflection of the arch reaches 80 mm , the load factor has decreased to 14 . At this point the second limit point is reached, and the arch finds a new stable configuration. After this point the load factor increases with increasing deflection.

Figure 3: Load versus deflection curve.
The progressive deformation of the block and the arch, including the snap-through of the arch, is shown in Figure 4 for six values of the continuation parameter. Figure 5 shows the contact pressure exerted by the block on the arch during the snap-through.

Figure 4: Deformation of the model for six different parameter values.
para(9) $=0.4$

Figure 5: Contact pressure acting on the arch.

Notes About the COMSOL Implementation

When a Shell interface is used in a contact simulation, it is recommended that the destination boundary always belongs to the shell. Moreover, the contact definition should be made in the Shell interface. In this example, the block modeled with a Solid Mechanics interface is thus, in the Contact node, considered as external to the current physics.

Contact problems are often unstable in their initial configuration. To help the solver find an initial solution, a Spring Foundation is added to the otherwise unconstrained block during the first parameter step.

Modeling the post-critical behavior of a system is not possible by incrementally increasing the boundary load. The unstable behavior is even more pronounced when contact is present. To be able to find all limit points and to track the full load versus deflection curve, a displacement controlled load scheme is used by adding a Global Equation. Here, the magnitude of the boundary load is controlled through the monotonically increasing deflection of the arch. Alternatively, the vertical displacement could be prescribed on the top surface of the block, but this is a less general technique that fails for some cases. Also, a prescribed displacement would not give an evenly distributed load.

Reference

1. P. Wriggers, Computational Contact Mechanics, Springer-Verlag, 2006

Application Library path: Structural_Mechanics_Module/
Verification_Examples/block_on_arch

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Shell (shell).
3 Click Add.

4 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
5 Click Add.
6 In the Displacement field text field, type u.
7 Click Study.
8 In the Select Study tree, select General Studies>Stationary.
9 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file block_on_arch_parameters.txt.

GEOMETRY I

Work Plane I (wpl)
I In the Geometry toolbar, click Work Plane.
2 In the Settings window for Work Plane, locate the Plane Definition section.
3 From the Plane list, choose xz-plane.
4 Click Show Work Plane.
Work Plane I (wp I)>Circle I (cl)
I In the Work Plane toolbar, click Circle.
2 In the Settings window for Circle, locate the Object Type section.
3 From the Type list, choose Curve.
4 Locate the Size and Shape section. In the Radius text field, type R_arch.
5 In the Sector angle text field, type seg_arch.
6 Locate the Position section. In the yw text field, type - R_arch.
7 Locate the Rotation Angle section. In the Rotation text field, type 90-seg_arch/2.
8 Click Build Selected.
9 Click the Zoom Extents button in the Graphics toolbar.

Work Plane I (wpl)>Delete Entities I (dell)

I In the Model Builder window, right-click Plane Geometry and choose Delete Entities.
2 On the object $\mathbf{c l}$, select Boundaries 2 and 3 only.
Work Plane I (wpl)>Partition Edges I (parel)
I In the Work Plane toolbar, click Booleans and Partitions and choose Partition Edges.
2 On the object dell, select Boundary l only.
Work Plane I (wp I)>Circle 2 (c2)
I In the Work Plane toolbar, click Circle.
2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type R_block.
4 In the Sector angle text field, type seg_block.
5 Locate the Position section. In the yw text field, type R_block.
6 Locate the Rotation Angle section. In the Rotation text field, type-90-seg_block/2.
7 Click Build Selected.
8 Click the Zoom Extents button in the Graphics toolbar.

Work Plane I (wpl)>Rectangle I (rl)

I In the Work Plane toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type R_block.
4 In the Height text field, type height_block.
5 Locate the Position section. In the $\mathbf{x w}$ text field, type -R_block/2.
6 Click Build Selected.
Work Plane I (wpl)>Intersection I (int I)
I In the Work Plane toolbar, click Booleans and Partitions and choose Intersection.
2 Select the objects c2 and \mathbf{r} only.
Work Plane I (wpl)
I In the Model Builder window, click Work Plane I (wpl).
2 In the Settings window for Work Plane, locate the Unite Objects section.
3 Clear the Unite objects check box.
Extrude I (extl)
I In the Geometry toolbar, click Extrude.

2 In the Settings window for Extrude, locate the Distances section.
3 In the table, enter the following settings:

Distances (m)

d

4 Click Build Selected.
5 Click the Zoom Extents button in the Graphics toolbar.
Explicit Selection I (sell)
I In the Geometry toolbar, click Selections and choose Explicit Selection.
2 In the Settings window for Explicit Selection, type Arch in the Label text field.
3 Locate the Entities to Select section. From the Geometric entity level list, choose Object.
4 Select the object extl(I) only.
5 Locate the Color section. From the Color list, choose Color 4.
6 Click Build Selected.
Arch I (sel2)
I Right-click Arch and choose Duplicate.
2 In the Settings window for Explicit Selection, type Block in the Label text field.
3 Locate the Entities to Select section. In the list, select extl(I).
4 Select the object extl(2) only.
5 Locate the Color section. From the Color list, choose Color 12.

Form Union (fin)

I In the Model Builder window, under Component I (compl)>Geometry I click Form Union (fin).
2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
3 From the Action list, choose Form an assembly.
4 Click Build Selected.
5 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)
I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$10[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.2	I	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

Material 2 (mat2)
I Right-click Materials and choose Blank Material.
2 In the Settings window for Material, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 From the Selection list, choose Arch.
5 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$70[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

DEFINITIONS

Average I (aveopl)
I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, locate the Source Selection section.
3 From the Geometric entity level list, choose Point.
4 Select Point 11 only.
Average 2 (aveop2)
I Right-click Average I (aveopI) and choose Duplicate.
2 In the Settings window for Average, locate the Source Selection section.

3 Click Clear Selection.

4 Select Point 3 only.

Variables I

I In the Model Builder window, right-click Definitions and choose Variables.
2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit	Description
disp_block	aveop1 $(-w)$	m	Block displacement
disp_arch	aveop2 $(-\mathrm{w})$	m	Arch displacement

Contact Pair I (pl)
I In the Definitions toolbar, click Pairs and choose Contact Pair.
2 Select Boundaries 4 and 8 only.
3 Click the Go to Default View button in the Graphics toolbar.
4 In the Settings window for Pair, locate the Destination Boundaries section.
5 From the Selection list, choose Arch.
The destination boundary should be on a boundary modeled with the Shell interface.

SHELL (SHELL)

I In the Model Builder window, under Component I (compl) click Shell (shell).
2 In the Settings window for Shell, locate the Boundary Selection section.
3 From the Selection list, choose Arch.
Thickness and Offset I
I In the Model Builder window, under Component I (compl)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type d.
4 From the Offset definition list, choose Relative offset.
5 In the $z_{\text {reloffset }}$ text field, type -1.

Prescribed Displacement/Rotation I

I In the Physics toolbar, click Edges and choose Prescribed Displacement/Rotation.
2 Select Edges 1 and 7 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 Select the Prescribed in z direction check box.
6 Locate the Prescribed Rotation section. From the By list, choose Rotation.

Symmetry I

I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edges 2, 3, 5, and 6 only.

Contact I

I In the Physics toolbar, in the Boundary section, click Pairs and choose Contact.
2 In the Settings window for Contact, locate the Pair Selection section.
3 Under Pairs, click Add.
4 In the Add dialog box, select Contact Pair I (pI) in the Pairs list.
5 Click OK.
6 In the Settings window for Contact, locate the Contact Method section.
7 From the Formulation list, choose Augmented Lagrangian.
8 Select the Source external to current physics check box.
The source boundary is in the Solid Mechanics interface.

SOLID MECHANICS (SOLID)

In the Model Builder window, under Component I (compI) click Solid Mechanics (solid).

Prescribed Displacement I

I In the Physics toolbar, click Edges and choose Prescribed Displacement.
2 Select Edges 13 and 19 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.

Symmetry I

I In the Physics toolbar, click Boundaries and choose Symmetry.
2 Select Boundaries 5 and 6 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundary 7 only.
3 In the Settings window for Boundary Load, locate the Force section.

4 Specify the \mathbf{F}_{A} vector as

0	x
0	y
load*F_ref	z

The dependent variable load will be created in the next step using a global equation.
5 Click the Show More Options button in the Model Builder toolbar.
6 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Equation-Based Contributions.
7 Click $\mathbf{0 K}$.

Global Equations I

I In the Physics toolbar, click Global and choose Global Equations.
2 In the Settings window for Global Equations, locate the Global Equations section.
3 In the table, enter the following settings:

Name	f(u,ut,utt, t) (I)	Initial value $\left(u_{-} 0\right)(1)$	Initial value $\left(u_{-} t 0\right)(1 / s)$	Description
load	```disp_bl ock- para* max_dis p```	0	0	

4 Locate the Units section. Click Select Source Term Quantity.
5 In the Physical Quantity dialog box, type displacement in the text field.
6 Click Filter.
7 In the tree, select General>Displacement (m).
8 Click $\mathbf{O K}$.
Add a small spring stiffness to the block to stabilize the model during the initial step.
Spring Foundation I
I In the Physics toolbar, click Domains and choose Spring Foundation.
2 In the Settings window for Spring Foundation, locate the Domain Selection section.
3 From the Selection list, choose Block.
4 Locate the Spring section. In the \mathbf{k}_{V} text field, type $1 \mathrm{e} 3^{*}$ (para<0.01).

MESH I

Mapped I

I In the Model Builder window, under Component I (compl) right-click Mesh I and choose More Operations>Mapped.

2 In the Settings window for Mapped, locate the Boundary Selection section.
3 From the Selection list, choose Arch.

Distribution I

I Right-click Mapped I and choose Distribution.
2 Select Edges 2 and 5 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type n_elem_arch.

Mapped 2

I In the Model Builder window, right-click Mesh I and choose More Operations>Mapped.
2 Select Boundary 5 only.
Distribution I
I Right-click Mapped 2 and choose Distribution.
2 Select Edges 10 and 17 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type n_elem_block.
Distribution 2
I In the Model Builder window, right-click Mapped 2 and choose Distribution.
2 Select Edges 9 and 20 only.
Swept I
I In the Model Builder window, right-click Mesh I and choose Swept.
2 In the Settings window for Mesh, click Build All.

3 Click the Zoom Extents button in the Graphics toolbar.

STUDY I
Step I: Stationary
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Auxiliary sweep check box.

4 Click Add.

5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
para (Load parameter)	range $(0,0.05,1)$	

Solution I (soll)
In the Study toolbar, click Show Default Solver.

Stationary Solver I

I In the Model Builder window, expand the Solution I (soll) node, then click Stationary Solver I.

2 In the Settings window for Stationary Solver, locate the General section.
3 In the Relative tolerance text field, type 0.0005.

State variable load (compl.ODEI)
I In the Model Builder window, expand the Study I>Solver Configurations>
Solution I (solI)>Dependent Variables I node, then click State variable load (compl.ODEI).

2 In the Settings window for State, locate the Scaling section.
3 From the Method list, choose Manual.

Segregated I

In the Model Builder window, expand the Study I>Solver Configurations>Solution I (soll)> Stationary Solver I node.

Shell

I In the Model Builder window, expand the Segregated I node, then click Shell.
2 In the Settings window for Segregated Step, locate the General section.
3 Under Variables, click Add.
4 In the Add dialog box, select State variable load (compl.ODEI) in the Variables list.
5 Click OK.

Solid Mechanics

I In the Model Builder window, right-click Solid Mechanics and choose Delete.
Structural mechanics interfaces should be solved in a single segregated step.
2 In the Study toolbar, click Compute.

RESULTS

Surface 2

I In the Model Builder window, expand the Stress (shell) node.
2 Right-click Results>Stress (shell)>Surface I and choose Duplicate.
3 In the Settings window for Surface, locate the Data section.
4 From the Dataset list, choose Study I/Solution I (soll).
5 Locate the Expression section. In the Expression text field, type solid.mises.
6 Click to expand the Inherit Style section. From the Plot list, choose Surface I.
7 In the Stress (shell) toolbar, click Plot.
8 Click the Show Grid button in the Graphics toolbar.
9 Click the Zoom Extents button in the Graphics toolbar.

Contact (shell)

I In the Model Builder window, click Contact (shell).
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Parameter value (para) list, choose 0.4.
Contact I, Pressure
I In the Model Builder window, expand the Contact (shell) node, then click Contact I, Pressure.

2 In the Settings window for Arrow Surface, locate the Coloring and Style section.
3 Select the Scale factor check box.
4 In the associated text field, type 5e-10.

Gray Surfaces

In the Model Builder window, right-click Gray Surfaces and choose Enable.

Selection I

I In the Model Builder window, expand the Gray Surfaces node.
2 Right-click Gray Surfaces and choose Selection.
3 Select Boundary 1 only.
4 In the Settings window for Selection, locate the Selection section.
5 From the Selection list, choose Arch.
6 In the Contact (shell) toolbar, click Plot.
Animation I
I In the Contact (shell) toolbar, click Animation and choose Player.
2 In the Settings window for Animation, locate the Frames section.
3 From the Frame selection list, choose All.
4 Right-click Animation I and choose Play.

ID Plot Group 7

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Load vs Deflection in the Label text field.

Global I

I Right-click Load vs Deflection and choose Global.
2 In the Settings window for Global, locate the \mathbf{y}-Axis Data section.

3 In the table, enter the following settings:

Expression	Unit	Description
disp_block	mm	Block displacement
disp_arch	mm	Arch displacement

4 Locate the x-Axis Data section. From the Parameter list, choose Expression.
5 In the Expression text field, type load.
6 Click to expand the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Cycle.

Load vs Deflection
I In the Model Builder window, click Load vs Deflection.
2 In the Settings window for ID Plot Group, locate the Plot Settings section.
3 Select the Flip the \mathbf{x} - and \mathbf{y}-axes check box.
4 Locate the Legend section. From the Position list, choose Upper left.
5 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
6 In the associated text field, type Deflection (mm).
7 In the Load vs Deflection toolbar, click Plot.
ID Plot Group 8
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Deformation in the Label text field.
3 Locate the Data section. From the Parameter selection (para) list, choose Manual.
4 In the Parameter indices (I-2I) text field, type range (1,4,21).
5 Click to expand the Title section. From the Title type list, choose None.

Line Graph I

I Right-click Deformation and choose Line Graph.
2 Select Edges 2 and 5 only.
3 In the Settings window for Line Graph, locate the \mathbf{y}-Axis Data section.
4 In the Expression text field, type z.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type x.
7 Click to expand the Coloring and Style section. In the Width text field, type 2.

Line Graph 2

I Right-click Line Graph I and choose Duplicate.
2 In the Settings window for Line Graph, locate the Selection section.
3 Select the Activate selection toggle button.
4 Select Edges 9, 10, 14, 17, and 20 only.
5 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.

6 From the Color list, choose Cycle (reset).

Line Graph I

I In the Model Builder window, click Line Graph I.
2 In the Settings window for Line Graph, click to expand the Legends section.
3 Select the Show legends check box.
4 Find the Include subsection. In the Prefix text field, type para = .
5 In the Deformation toolbar, click Plot.
Stress (shell)
Click the Zoom Extents button in the Graphics toolbar.

Channel Beam

Introduction

In the following example you build and solve a simple 3D beam model using the 3D Beam interface. This example calculates the deformation, section forces, and stresses in a cantilever beam, and compares the results with analytical solutions. The first few natural frequencies are also computed. The purpose of the example is twofold: It is a verification of the functionality of the beam element in COMSOL Multiphysics, and it explains in detail how to give input data and interpret results for a nontrivial cross section.

This example also illustrates how to use the Beam Cross Section interface to compute the beam section properties and evaluate the stress distribution within the beam cross section.

Model Definition
The physical geometry is displayed in Figure 1. The finite element idealization consists of a single line.

Figure 1: The physical geometry.
The cross section with its local coordinate system is shown in Figure 2. The height of the cross section is 50 mm and the width is 25 mm . The thickness of the flanges is 6 mm , while the web has a thickness of 5 mm . Note that the global y direction corresponds to the local negative z direction, and the global z direction corresponds to the local y direction. In the
following, uppercase subscripts are used for the global directions and lowercase subscripts for the local directions.

Figure 2: The beam cross section with local direction indicated.
For a detailed analysis, a case where the corners between the flange and the web are rounded are also studied. A 4 mm radius fillet is used at the external corner and a 2 mm radius fillet at the internal corner. This geometry is considered using the Beam Cross Section interface.

GEOMETRY

- Beam length, $L=1 \mathrm{~m}$
- Cross-section area $A=4.90 \cdot 10^{-4} \mathrm{~m}^{2}$ (from the cross section library)
- Area moment of inertia in stiff direction, $I_{z z}=1.69 \cdot 10^{-7} \mathrm{~m}^{4}$
- Area moment of inertia in weak direction, $I_{y y}=2.77 \cdot 10^{-8} \mathrm{~m}^{4}$
- Torsional constant, $J=5.18 \cdot 10^{-9} \mathrm{~m}^{4}$
- Position of the shear center (SC) with respect to the area center of gravity (CG), $e_{z}=0.0148 \mathrm{~m}$
- Torsional section modulus $W_{\mathrm{t}}=8.64 \cdot 10^{-7} \mathrm{~m}^{3}$
- Ratio between maximum and average shear stress for shear in y direction, $\mu_{y}=2.44$
- Ratio between maximum and average shear stress for shear in z direction, $\mu_{\mathrm{z}}=2.38$
- Locations for axial stress evaluation are positioned at the outermost corners of the profile at the points
$\left(y_{1}, z_{1}\right)=(-0.025,-0.0164)$
$\left(y_{2}, z_{2}\right)=(0.025,-0.0164)$
$\left(y_{3}, z_{3}\right)=(0.025,0.0086)$,
$\left(y_{4}, z_{4}\right)=(-0.025,0.0086)$
measured in the local coordinate system. The indices of the coordinates are point identifiers.

The values above are based on the idealized geometry with sharp corners. In a separate study you compute the section properties including fillets, using the Beam Cross Section interface.

material

- Young's modulus, $E=210 \mathrm{GPa}$
- Poisson's ratio, $v=0.25$
- Mass density, $\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$

CONSTRAINTS

One end of the beam is fixed.

LOADS

In the first load case, the beam is subjected to three forces and one twisting moment at the tip. The values are:

- Axial force $F_{X}=10 \mathrm{kN}$
- Transverse forces $F_{Y}=50 \mathrm{~N}$ and $F_{Z}=100 \mathrm{~N}$
- Twisting moment $M_{X}=-10 \mathrm{Nm}$

In the second load case, the beam is subjected to a gravity load in the negative Z direction. The third case is an eigenfrequency analysis.

Results and Discussion

The analytical solutions for a slender cantilever beam with loads at the tip are summarized below. The displacements are

$$
\begin{aligned}
& \delta_{X}=\delta_{\mathrm{x}}=\frac{F_{\mathrm{x}} L}{E A}=\frac{F_{\mathrm{X}} L}{E A}= \\
& \frac{10000 \mathrm{~N} \cdot 1 \mathrm{~m}}{2 \cdot 10^{11} \mathrm{~Pa} \cdot 4.90 \cdot 10^{-4} \mathrm{~m}^{2}}=1.02 \cdot 10^{-4} \mathrm{~m} \\
& \delta_{\mathrm{Z}}=\delta_{\mathrm{y}}=\frac{F_{y} L^{3}}{3 E I_{\mathrm{zz}}}=\frac{F_{Z} L^{3}}{3 E I_{\mathrm{zz}}}= \\
& \frac{100 \mathrm{~N} \cdot(1 \mathrm{~m})^{3}}{3 \cdot 2 \cdot 10^{11} \mathrm{~Pa} \cdot 1.69 \cdot 10^{-7} \mathrm{~m}^{4}}=9.86 \cdot 10^{-4} \mathrm{~m} \\
& \frac{\delta_{\mathrm{Y}}=-\delta_{\mathrm{z}}=\frac{-F_{\mathrm{z}} L^{3}}{3 E I_{\mathrm{yy}}}=\frac{F_{\mathrm{Y}} L^{3}}{3 E I_{\mathrm{yy}}}=}{\frac{50 \mathrm{~N} \cdot(1 \mathrm{~m})^{3}}{3 \cdot 2 \cdot 10^{11} \mathrm{~Pa} \cdot 2.77 \cdot 10^{-8} \mathrm{~m}^{4}}=3.01 \cdot 10^{-3} \mathrm{~m}} \\
& \theta_{\mathrm{X}}=\theta_{\mathrm{x}}=\frac{M_{\mathrm{x}} L}{G J}=\frac{M_{\mathrm{X}} L}{G J}= \\
& \frac{-10 \mathrm{Nm} \cdot 1 \mathrm{~m}}{\frac{2}{2\left(10^{11} \mathrm{~Pa}\right.} \cdot 5.18 \cdot 10^{-9} \mathrm{~m}^{4}}=-2.41 \cdot 10^{-2} \mathrm{rad}
\end{aligned}
$$

The stresses from the axial force, shear force, and torsion are constant along the beam, while the bending moment and bending stresses, are largest at the fixed end. The axial stresses at the fixed end caused by the different loads are computed as

$$
\begin{gather*}
\sigma_{\mathrm{x}, F_{\mathrm{x}}}=\frac{F_{\mathrm{x}}}{A}=\frac{F_{\mathrm{X}}}{A}=\frac{10000 \mathrm{~N}}{4.90 \cdot 10^{-4} \mathrm{~m}^{2}}=2.04 \cdot 10^{7} \mathrm{~Pa} \\
\sigma_{\mathrm{x}, M \mathrm{z}}=\frac{-M_{\mathrm{z}} y}{I_{\mathrm{zz}}}=\frac{-F_{\mathrm{y}} L y}{I_{\mathrm{zz}}}=\frac{-F_{\mathrm{Z}} L y}{I_{\mathrm{zz}}}= \tag{1}\\
\frac{-100 \mathrm{~N} \cdot 1 \mathrm{~m}}{1.69 \cdot 10^{-7} \mathrm{~m}^{4}} \cdot y=-5.92 \cdot 10^{8} \frac{\mathrm{~Pa}}{\mathrm{~m}} \cdot y \\
\sigma_{\mathrm{x}, M \mathrm{y}}=\frac{M_{\mathrm{y}} z}{I_{\mathrm{yy}}}=\frac{-F_{\mathrm{z}} L z}{I_{\mathrm{yy}}}=\frac{F_{\mathrm{Y}} L z}{I_{\mathrm{yy}}}= \tag{2}\\
\frac{50 \mathrm{~N} \cdot 1 \mathrm{~m}}{2.77 \cdot 10^{-8} \mathrm{~m}^{4}} \cdot y=1.81 \cdot 10^{9} \frac{\mathrm{~Pa}}{\mathrm{~m}} \cdot z
\end{gather*}
$$

In Table 1 the stresses in the stress evaluation points are summarized after insertion of the local coordinates y and z in Equation 1 and Equation 2.

TABLE I: AXIAL STRESSES IN MPA AT EVALUATION POINTS.

Point	Stress from $\mathbf{F}_{\mathrm{X}}\left(=\mathrm{F}_{\mathrm{X}}\right)$	Stress from $\mathbf{F}_{\mathrm{Y}}\left(=-\mathrm{F}_{\mathrm{Z}}\right)$	Stress from $\mathrm{F}_{\mathrm{Z}}\left(=\mathrm{F}_{\mathrm{Y}}\right)$	Totalbending stress	Totalaxial stress
I	20.4	14.8	-29.7	-14.9	5.5
2	20.4	-14.8	-29.7	-44.5	-24.1
3	20.4	-14.8	15.6	0.8	21.2
4	20.4	14.8	15.6	30.4	50.8

Due to the shear forces and twisting moment there are also shear stresses in the section. In general, the shear stresses have a complex distribution, which depends strongly on the geometry of the actual cross section. The peak values of the shear stress contributions from shear forces are

$$
\begin{aligned}
& \tau_{\text {sy }, \text { max }}=\mu_{\mathrm{y}} \tau_{\text {sy , mean }}=\mu_{\mathrm{y}} \frac{F_{\mathrm{y}}}{A}=\mu_{\mathrm{y}} \frac{F_{\mathrm{z}}}{A}= \\
& 2.44 \cdot \frac{100 \mathrm{~N}}{4.90 \cdot 10^{-4} \mathrm{~m}^{2}}=2.44 \cdot 2.04 \cdot 10^{5} \mathrm{~Pa}=4.98 \cdot 10^{5} \mathrm{~Pa} \\
& \tau_{\mathrm{sz}, \max }=\mu_{\mathrm{z}} \tau_{\mathrm{sz}, \text { mean }}=\mu_{\mathrm{z}} \frac{F_{\mathrm{z}}}{A}=\mu_{\mathrm{z}} \frac{-F_{\mathrm{Y}}}{A}= \\
& 2.38 \cdot \frac{-50 \mathrm{~N}}{4.90 \cdot 10^{-4} \mathrm{~m}^{2}}=-2.38 \cdot 1.02 \cdot 10^{5} \mathrm{~Pa}=-2.43 \cdot 10^{5} \mathrm{~Pa}
\end{aligned}
$$

The peak value of the shear stress created by torsion is

$$
\tau_{\mathrm{t}, \max }=\frac{\left|M_{x}\right|}{W_{\mathrm{t}}}=\frac{\left|M_{X}\right|}{W_{\mathrm{t}}}=\frac{10 \mathrm{Nm}}{8.64 \cdot 10^{-7} \mathrm{~m}^{3}}=11.6 \cdot 10^{6} \mathrm{~Pa}
$$

Since the general cross-section data used for the analysis cannot predict the exact locations of the peak stresses from each type of action, a conservative scheme for combining the stresses is used in COMSOL Multiphysics. If the computed results exceeds allowable values somewhere in a beam structure, this may be due to this conservatism. You must then check the details, using information about the exact type of cross section and combination of loadings. This can be done using the Beam Cross Section interface.

The conservative maximum shear stresses are created by adding the maximum shear stress from torsion to the maximum shear stresses from shear force:

$$
\begin{aligned}
& \tau_{\mathrm{xz}, \max }=\left|\tau_{\mathrm{sz}, \max }\right|+\tau_{\mathrm{t}, \max }=11.8 \cdot 10^{6} \mathrm{~Pa} \\
& \tau_{\mathrm{xy}, \max }=\left|\tau_{\mathrm{sy}, \max }\right|+\tau_{\mathrm{t}, \max }=12.1 \cdot 10^{6} \mathrm{~Pa}
\end{aligned}
$$

A conservative equivalent stress is then computed as

$$
\sigma_{\mathrm{mises}}=\sqrt{\sigma_{\max }^{2}+3 \tau_{\mathrm{xy}, \max }^{2}+3 \tau_{\mathrm{xz}, \max }^{2}}=58.6 \cdot 10^{6} \mathrm{~Pa}
$$

The maximum normal stress, $\sigma_{\max }$, is taken as the highest absolute value in the any of the stress evaluation points (the rightmost column in Table l).

The COMSOL results for the first load case give 58.6 MPa von Mises stress at the constrained end of the beam which is in total agreement with the analytical solution. Actually, the results would have been the same with any mesh density, because the formulation of the beam elements in COMSOL contains the exact solutions to beam problems with only point loads.

In the second load case there is an evenly distributed gravity load. Since the resultant of a gravity load acts through the mass center of the beam, it does not just cause pure bending but also a twist of the beam. The reason is that in order to cause pure bending, a transverse force must act through the shear center of the section. In COMSOL Multiphysics this effect is automatically accounted for when you apply an edge load. An additional edge moment is created, using the e_{z} (or, depending on load direction, e_{y}) cross section property. The analytical solution to the tip deflections in the self-weight problem is

$$
\begin{gathered}
\delta_{\mathrm{Z}}=-\delta_{\mathrm{y}}=\frac{-q_{\mathrm{y}} L^{4}}{8 E I_{\mathrm{zz}}}=\frac{q_{\mathrm{z}} L^{4}}{8 E I_{\mathrm{zz}}}=\frac{-\rho g A L^{4}}{8 E I_{\mathrm{zz}}}= \\
\frac{-8000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \frac{\mathrm{~m}}{2} \cdot 4.90 \cdot 10^{-4} \mathrm{~m}^{2} \cdot(1 \mathrm{~m})^{4}}{8 \cdot 2 \cdot 10^{11} \mathrm{~Pa} \cdot 1.69 \cdot 10^{-7} \mathrm{~m}^{4}}=-1.42 \cdot 10^{-4} \mathrm{~m} \\
\frac{\theta_{\mathrm{x}}=\frac{m_{\mathrm{x}} L^{2}}{2 G J}=\frac{q_{\mathrm{y}} e_{\mathrm{z}} L^{2}}{2 G J}=\frac{\rho g A e_{\mathrm{z}} L^{2}}{2 G J}=}{-8000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3} \cdot 9.81 \frac{\mathrm{~m}}{2} \cdot 4.90 \cdot 10^{-4} \mathrm{~m}^{2} \cdot 0.0148 \mathrm{~m} \cdot(1 \mathrm{~m})^{2}}} \begin{array}{l}
2 \cdot \frac{2 \cdot 10^{11} \mathrm{~Pa}}{2(1+0.25)} \cdot 5.18 \cdot 10^{-9} \mathrm{~m}^{4}
\end{array}
\end{gathered}
$$

Also for this case, the COMSOL Multiphysics solution captures the analytical solution exactly. Note, however, that in this case the resolution of the stresses is mesh dependent.

When using a shear center offset as in this example, you must bear in mind that the beam theory assumes that torsional moments and shear forces are applied at the shear center, while axial forces and bending moments are referred to the center of gravity. Thus, when point loads are applied it may be necessary to account for this offset.

The mode shapes and the natural frequencies of the beam are of three types: tension, torsion, and bending. The analytical expressions for the natural frequencies of the different types are:

$$
\begin{gather*}
f_{n, \text { tension }}=\frac{2 n+1}{4 L} \sqrt{\frac{E}{\rho}} \tag{3}\\
f_{n, \text { torsion }}=\frac{2 n+1}{4 L} \sqrt{\frac{G J}{\rho\left(I_{\mathrm{yy}}+I_{\mathrm{zz}}\right)}} \tag{4}\\
f_{n, \text { bending }}=\frac{k_{n}}{2 \pi} \sqrt{\frac{E I}{\rho A L^{4}}} \tag{5}\\
\cos \left(\sqrt{k_{n}}\right) \cosh \left(\sqrt{k_{n}}\right)=-1 \\
\Rightarrow k_{n}=3.516,22.03,61.70,120.9,200.0, \ldots
\end{gather*}
$$

In Table 2 the computed results are compared with the results from Equation 3, Equation 4, and Equation 5 . The agreement is generally very good. The largest difference occurs in Mode 12. This is the fifth order torsional mode, for which the mesh is not sufficient for a high accuracy resolution.

TABLE 2: COMPARISON BETWEEN ANALYTICAL AND COMPUTED NATURAL FREQUENCIES.

Mode number	Mode type	Analytical frequency (Hz)	COMSOL result (Hz)
1	First y bending	21.02	21.04
2	First z bending	51.96	51.96
3	First torsion	128.3	128.4
4	Second y bending	131.7	131.8
5	Second z bending	325.5	325.7
6	Third y bending	368.8	369.2
7	Second torsion	384.9	388.4

TABLE 2: COMPARISON BETWEEN ANALYTICAL AND COMPUTED NATURAL FREQUENCIES.

Mode number	Mode type	Analytical frequency (Hz)	COMSOL result (Hz)
8	Third torsion	641.5	658.1
9	Fourth y bending	722.8	724.1
10	Fourth torsion	898.1	943.7
11	Third z bending	911.8	912.0
12	Fifth torsion	1155	1251
13	Fifth y bending	1196	1199
14	First axial	1250	1251

When the computed section forces at the constrained end of the beam are fed into the Beam Cross Section interface, Figure 3 below shows the von Mises stress distribution within the cross section. One can notice that the maximum stress value is about 66 MPa which is slightly higher than the value computed in the beam interface (58 MPa). The stress computed with analytical cross section data is slightly underestimated. The reason is that the geometric representation used includes the fillets. If exactly the same cross section data are used, the stresses computed by the Beam interface are always conservative.

In Figure 4 to Figure 6 examples are shown of how the stress distributions from the individual section forces are displayed in the Beam Cross Section interface.

Figure 3: von Mises stress distribution at the fixed end $(x=0)$.

Figure 4: Plot of stresses from a bending moment. The center of gravity is highlighted.

Figure 5: Plot of stresses from shear force. The shear center is highlighted.

Figure 6: Plot of shear stresses from torsion.

Table 3 lists the beam cross section data computed using the Beam Cross Section interface and a geometry with fillets. There are significant differences in the maximum shear stress factor and torsional section modulus values. The stress concentration around the round corner explains these differences.

TABLE 3: COMPUTED BEAM CROSS SECTION DATA.

Parameter	Value
Area	$4.8485 \mathrm{e}-4 \mathrm{~m}^{2}$
First moment of inertia	$1.6556 \mathrm{e}-7 \mathrm{~m}^{4}$
Distance to shear center in the first principal direction	0.0146 II m
Second moment of inertia	$2.7252 \mathrm{e}-8 \mathrm{~m}^{4}$
Distance to shear center in the second principal direction	$-9.5565 \mathrm{e}-9 \mathrm{~m}$
Torsional constant	$4.79754 \mathrm{e}-9 \mathrm{~m}^{4}$
Torsional section modulus	$5.6922 \mathrm{e}-7 \mathrm{~m}^{3}$
Max shear stress factor in the second principal direction	3.0504
Max shear stress factor in the first principal direction	3.67 II

If these cross section data are used in the Beam interface, the maximum von Mises stress is 73 MPa , which is slightly above the real value.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/channel_beam

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Beam (beam).
3 Click Add.
4 Click Study.

5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
h 1	$25[\mathrm{~mm}]$	0.025 m	Flange width
h2	$50[\mathrm{~mm}]$	0.05 m	Section height
t 1	$5[\mathrm{~mm}]$	0.005 m	Web thickness
t2	$6[\mathrm{~mm}]$	0.006 m	Flange thickness
L	$1[\mathrm{~m}]$	I m	Beam length
Eb	$2 \mathrm{e} 11[\mathrm{~Pa}]$	2 EII Pa	Young's modulus
nub	0.25	0.25	Poisson's ratio
rhob	$8000\left[\mathrm{~kg} / \mathrm{m}^{\wedge} 3\right]$	$8000 \mathrm{~kg} / \mathrm{m}^{3}$	Density
FX	$10 \mathrm{e} 3[\mathrm{~N}]$	10000 N	Force in X direction
FY	$50[\mathrm{~N}]$	50 N	Force in Y direction
FZ	$100[\mathrm{~N}]$	100 N	Force in Z direction
MX	$-10[\mathrm{~N} * \mathrm{~m}]$	$-10 \mathrm{~N} \cdot \mathrm{~m}$	Moment in X direction

Load Group I
I In the Model Builder window, right-click Global Definitions and choose Load and Constraint Groups>Load Group.

2 In the Settings window for Load Group, type edge in the Parameter name text field.

Load Group 2

I In the Model Builder window, right-click Load and Constraint Groups and choose Load Group.
2 In the Settings window for Load Group, type point in the Parameter name text field.

GEOMETRY I

Polygon I (poll)
I In the Geometry toolbar, click More Primitives and choose Polygon.

2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

$\mathbf{x}(\mathbf{m})$	$\mathbf{y}(\mathbf{m})$	$\mathbf{z (m)}$
0	0	0
1	0	0

4 Click Build All Objects.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	Eb	Pa	Basic
Poisson's ratio	nu	nub	I	Basic
Density	rho	rhob	$\mathrm{kg} / \mathrm{m}^{3}$	Basic

DEFINITIONS

Define the cross section parameters to compute the analytical values of the displacement and section forces of the beam.

Variables I

I In the Model Builder window, under Component I (compl) right-click Definitions and choose Variables.

2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit	Description
Gb	Eb $/\left(2^{\star}(1+n u b)\right)$	Pa	Shear Modulus
A	$4.9 e-4\left[m^{\wedge} 2\right]$	m^{2}	Cross section area
Iyy	$2.77 e-8\left[m^{\wedge} 4\right]$	$\mathrm{m}^{\wedge 4}$	Area moment of inertia, y component
Izz	$1.69 e-7\left[m^{\wedge} 4\right]$	$\mathrm{m}^{\wedge 4}$	Area moment of inertia, z component

Name	Expression	Unit	Description
Jbeam	5.18e-9[m^4]	$\mathrm{m}^{\wedge} 4$	Torsion constant
Wt	8.64e-7[m^3]	m^{3}	Torsion section modulus
ey	O[m]	m	Shear center relative to centroid, y-coordinate
ez	0.0148 [m]	m	Shear center relative to centroid, z-coordinate
muy	2.44		Max shear stress factor in local y direction
muz	2.38		Maximum shear stress factor in local z direction
y1	-0.025[m]	m	Evaluation point 1, local ycoordinate
z1	-0.0164[m]	m	Evaluation point 1, local zcoordinate
y2	0.025 [m]	m	Evaluation point 2, local ycoordinate
z2	-0.0164[m]	m	Evaluation point 2, local zcoordinate
y3	0.025 [m]	m	Evaluation point 3, local ycoordinate
z3	$0.0086[\mathrm{~m}]$	m	Evaluation point 3, local zcoordinate
y4	-0.025[m]	m	Evaluation point 4, local ycoordinate
z4	$0.0086[\mathrm{~m}]$	m	Evaluation point 4, local zcoordinate

Define an analytic function to evaluate the bending stress at different locations of the cross section.

Analytic I (anl)
I In the Home toolbar, click Functions and choose Global>Analytic.
2 In the Settings window for Analytic, type sigmabx in the Function name text field.
3 Locate the Definition section. In the Expression text field, type -FZ* ${ }^{*}$ y/comp1. Izz+ FY*L*z/comp1.Iyy.
4 In the Arguments text field, type y, z.

5 Locate the Plot Parameters section. In the table, enter the following settings:

Argument	Lower limit	Upper limit
y	$-\mathrm{h} 2 / 2$	$\mathrm{~h} 2 / 2$
z	$-\mathrm{h} 1 / 2$	$\mathrm{~h} 1 / 2$

6 Locate the Units section. In the Arguments text field, type m, m.
7 In the Function text field, type $\mathrm{N} / \mathrm{m}^{\wedge} 2$.
8 Right-click Analytic I (anI) and choose Rename.
9 In the Rename Analytic dialog box, type sigmabx in the New label text field.
10 Click OK.
Define the variables for analytical values of the displacements, rotations and stresses.

Variables 2

I In the Model Builder window, right-click Definitions and choose Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit	Description
deltaX	FX*L/(Eb*A)	m	X displacement
deltaY	FY*L^3/(3*Eb*Iyy)	m	Y displacement
deltaZ	FZ*L^3/(3*Eb*Izz)	m	Z displacement
thetaX	MX*L/(Gb*Jbeam)	$\mathrm{N} / \mathrm{m}^{2}$	Stress due to axial load
sigmax_Fx	FX/A	$\mathrm{N} / \mathrm{m}^{2}$	Maximum shear stress due y force
tausy_max	muy*FZ/A	$\mathrm{N} / \mathrm{m}^{2}$	Maximum shear stress due to z force
tausz_max	- muz*FY/A	$\mathrm{N} / \mathrm{m}^{2}$	Shear stress due to torsion
taut_max	abs(MX)/Wt	$\mathrm{N} / \mathrm{m}^{2}$	Maximum shear stress z component
tauxz_max	abs(tausz_max)+taut_max		

Name	Expression	Unit	Description
tauxy_max	abs(tausy_max)+taut_max	$\mathrm{N} / \mathrm{m}^{2}$	Maximum shear stress, y component
sigx1	sigmax_Fx+sigmabx(y1, z1)	$\mathrm{N} / \mathrm{m}^{2}$	Normal stress at point 1
sigx2	sigmax_Fx+sigmabx (y2, z2)	$\mathrm{N} / \mathrm{m}^{2}$	Normal stress at point 2
sigx3	sigmax_Fx+sigmabx (y3, z3)	$\mathrm{N} / \mathrm{m}^{2}$	Normal stress at point 3
sigx4	sigmax_Fx+sigmabx(y4,z4)	$\mathrm{N} / \mathrm{m}^{2}$	Normal stress at point 4
sigx_max	$\begin{aligned} & \max (\max (\max (\operatorname{sig} 1, \operatorname{sig} x 2), \\ & \text { sigx3), sigx4) } \end{aligned}$	$\mathrm{N} / \mathrm{m}^{2}$	Maximum normal stress in cross section
sig_mises	$\begin{aligned} & \text { sqrt(sigx_max^2+3*tauxy_max^2+ } \\ & 3^{*} \text { tauxz_max^2) } \end{aligned}$	$\mathrm{N} / \mathrm{m}^{2}$	Maximum von Mises stress
deltaZ_g	-rhob*g_const*A*L^4/(8*Eb*Izz)	m	Z displacement due to gravity load
thetax_g	rhob*g_const*A*ez*L^2/(2*Gb* Jbeam)		Twist due to gravity load

BEAM (BEAM)

Cross Section Data I

I In the Model Builder window, under Component I (compl)>Beam (beam) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Definition section.
3 From the list, choose Common sections.
4 From the Section type list, choose U-profile.
5 In the h_{y} text field, type h2.
6 In the h_{z} text field, type h1.
7 In the t_{y} text field, type t 2 .
8 In the t_{z} text field, type $t 1$.

Section Orientation I

I In the Model Builder window, expand the Cross Section Data I node, then click Section Orientation I.

2 In the Settings window for Section Orientation, locate the Section Orientation section.
3 From the Orientation method list, choose Orientation vector.
4 Specify the V vector as
$0 \quad \mathrm{X}$
0 Y
1 Z
Gravity I
I In the Physics toolbar, click Edges and choose Gravity.
2 Select Edge 1 only.
3 In the Physics toolbar, click Load Group and choose Load Group I.

Fixed Constraint I

I In the Physics toolbar, click Points and choose Fixed Constraint.
2 Select Point 1 only.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 2 only.
3 In the Settings window for Point Load, locate the Force section.
4 Specify the \mathbf{F}_{P} vector as

FX	x
FY	y
FZ	z

5 Locate the Moment section. Specify the \mathbf{M}_{P} vector as

$M X$	x
0	y
0	z

6 In the Physics toolbar, click Load Group and choose Load Group 2.

STUDY I

Step I: Stationary

I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Define load cases check box.
4 Click Add twice to add two rows to the load case table.
5 In the table, enter the following settings:

Load case	edge	Weight	point	Weight
Point load		1.0	$\sqrt{ }$	1.0
Edge load	$\sqrt{ }$	1.0		1.0

6 In the Model Builder window, right-click Study I and choose Rename.
7 In the Rename Study dialog box, type Stationary Study: Beam in the New label text field.

8 Click OK.
9 In the Home toolbar, click Compute.

RESULTS

Stress (beam)

The first default plot shows the von Mises stress distribution for the second load case. You can switch to the first load case to evaluate von Mises stress distribution caused by the point load.

I In the Settings window for 3D Plot Group, locate the Data section.
2 From the Load case list, choose Point load.
3 In the Stress (beam) toolbar, click Plot.
The following steps illustrate how to evaluate the displacement and stress values in specific tables.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Case1: Displacement/Rotation in the Label text field.

3 Locate the Data section. From the Parameter selection (Load case) list, choose First.

4 Select Point 2 only.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Displacement>Displacement field - m>u Displacement field, x component.

6 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I $>$ Definitions $>$ Variables>deltaX - X displacement - m.

7 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $\mathbf{I}>$ Beam $>$ Displacement $>$ Displacement field - m>vDisplacement field, y component.

8 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Definitions>Variables>deltaY-Y displacement -m.

9 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component l>Beam>Displacement>Displacement field - m>w Displacement field, z component.

10 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Definitions>Variables>deltaZ - Z displacement -m.

II Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $\mathrm{I}>$ Beam $>$ Displacement>Rotation field - rad>thx Rotation field, \mathbf{X} component.

I2 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $I>$ Definitions $>$ Variables $>$ thetaX - Twist.

13 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
u	m	delta_x computed
deltaX	m	delta_x analytical
v	m	delta_y computed
deltaY	m	delta_y analytical
w	m	delta_z computed
deltaZ	m	delta_z analytical
thx	rad	theta_x computed
thetaX	1	theta_x analytical

14 Click Evaluate.
Table I
I In the Model Builder window, expand the Results>Tables node, then click Table I.

2 In the Settings window for Table, type Case1: Displacement/Rotation in the Label text field.

Point Evaluation 2

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Case2: Displacement/Rotation in the Label text field.

3 Select Point 2 only.
4 Locate the Data section. From the Parameter selection (Load case) list, choose Last.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component l>Beam>Displacement>Displacement field - m>w Displacement field, z component.

6 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $I>$ Definitions $>$ Variables>deltaZ_g \mathbf{Z} displacement due to gravity load - \mathbf{m}.

7 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $I>$ Beam $>$ Displacement $>$ Rotation field - rad $>$ thx Rotation field, X component.

8 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I $>$ Definitions $>$ Variables $>$ thetaX_g Twist due to gravity load.
9 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
w	m	delta_z computed
deltaZ_g	m	delta_z analytical
thx	rad	theta_x computed
thetaX_g	1	theta_x analytical

10 Click Evaluate.

Table 2

I In the Model Builder window, under Results>Tables click Table 2.
2 In the Settings window for Table, type Case2: Displacement/Rotation in the Label text field.

Point Evaluation 3

I In the Results toolbar, click Point Evaluation.

2 Select Point 2 only.
3 In the Settings window for Point Evaluation, locate the Data section.
4 From the Parameter selection (Load case) list, choose First.
5 In the Label text field, type Axial Stress from Fx.
6 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>
Stress variables at first evaluation point>beam.sI -
Normal stress at first evaluation point - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
7 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>
Stress variables at second evaluation point>beam.s2 -
Normal stress at second evaluation point - $\mathbf{N} / \mathbf{m}^{2}$.
8 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I $>$ Beam $>$ Stress $>$
Stress variables at third evaluation point>beam.s3-
Normal stress at third evaluation point $-\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
9 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I $>$ Beam $>$ Stress $>$
Stress variables at fourth evaluation point>beam.s4-
Normal stress at fourth evaluation point $\mathbf{- N / m} \mathbf{m}^{\mathbf{2}}$.
10 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
beam.s1	MPa	first point
beam.s2	MPa	second point
beam.s3	MPa	third point
beam.s4	MPa	fourth point

II Click Evaluate.

Table 3

I In the Model Builder window, under Results>Tables click Table 3.
2 In the Settings window for Table, type Normal Stress from Fx in the Label text field.

Point Evaluation 4

I In the Results toolbar, click Point Evaluation.

2 In the Settings window for Point Evaluation, type Total Bending Stress in the Label text field.

3 Locate the Data section. From the Parameter selection (Load case) list, choose First.
4 Select Point 1 only.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress> Stress variables at first evaluation point>beam.sblBending stress at first evaluation point - $\mathbf{N} / \mathbf{m}^{2}$.

6 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $\boldsymbol{I}>$ Definitions $>$ Functions>sigmabx (\mathbf{y}, \mathbf{z}) - sigmabx.

7 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component l>Beam>Stress>
Stress variables at second evaluation point>beam.sb2 -
Bending stress at second evaluation point - N/m².
8 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component $I>$ Definitions $>$ Functions $>\operatorname{sigmabx}(\mathbf{y}, \mathbf{z})$ - sigmabx.

9 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress> Stress variables at third evaluation point>beam.sb3 Bending stress at third evaluation point $-\mathbf{N} / \mathbf{m}^{2}$.

10 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Definitions>Functions>sigmabx(y,z)-sigmabx.

II Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component l>Beam>Stress>
Stress variables at fourth evaluation point>beam.sb4 -
Bending stress at fourth evaluation point $\mathbf{- N} / \mathbf{m}^{2}$.
I2 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Definitions>Functions>sigmabx(y,z)-sigmabx.

I3 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
beam.sb1	MPa	first point, computed
sigmabx (y1, z1)	MPa	first point, analytical
beam.sb2	MPa	second point, computed
sigmabx(y2, z2)	MPa	second point, analytical
beam.sb3	MPa	third point, computed

Expression	Unit	Description
sigmabx (y3, z3)	MPa	third point, analytical
beam.sb4	MPa	fourth point, computed
sigmabx (y4, z4)	MPa	fourth point, analytical
I4 Click Evaluate.		

Table 4

I In the Model Builder window, under Results>Tables click Table 4.
2 In the Settings window for Table, type Total Bending Stress in the Label text field.

Point Evaluation 5

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Shear Stress in the Label text field.
3 Locate the Data section. From the Parameter selection (Load case) list, choose First.
4 Select Point 1 only.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>beam.tsymax -
Max shear stress from shear force, \mathbf{y} direction - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
6 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I $>$ Definitions $>$ Variables $>$ tausy_max Maximum shear stress due \mathbf{y} force $\mathbf{- N} / \mathbf{m}^{\mathbf{2}}$.

7 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>beam.tszmax Max shear stress from shear force, \mathbf{z} direction - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.

8 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component l>Definitions>Variables>tausz_max Maximum shear stress due to \mathbf{z} force $\mathbf{- N / m} \mathbf{m}^{\mathbf{2}}$.

9 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>beam.ttmax -
Max torsional shear stress - $\mathbf{N} / \mathbf{m}^{2}$.
10 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I $>$ Definitions $>$ Variables $>$ taut_max -
Shear stress due to torsion $\mathbf{- N} / \mathbf{m}^{\mathbf{2}}$.
II Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>beam.txymax - Max shear stress, y direction - $\mathrm{N} / \mathbf{m}^{\mathbf{2}}$.

I2 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Definitions>Variables>tauxy_max Maximum shear stress, y component - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
13 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Beam>Stress>beam.txzmax - Max shear stress, z direction - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.

14 Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component I>Definitions>Variables>tauxz_max -

Maximum shear stress, \mathbf{z} component - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
I5 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
beam.tsymax	MPa	Max shear stress from shear force, y direction (Computed)
tausy_max	MPa	Max shear stress from shear force, y direction (Analytical)
beam.tszmax	MPa	Max shear stress from shear force, z direction (Computed)
tausz_max	MPa	Max shear stress from shear force, z direction (Analytical)
beam.ttmax	MPa	Max torsional shear stress (Computed)
taut_max	MPa	Max torsional shear stress (Analytical)
beam.txymax	MPa	Max shear stress, y direction (Computed)
tauxy_max	MPa	Max shear stress, y direction (Analytical)
beam.txzmax	MPa	Max shear stress, z direction (Computed)
tauxz_max	MPa	Max shear stress, z direction (Analytical)

16 Click Evaluate.

Table 5

I In the Model Builder window, under Results>Tables click Table 5.
2 In the Settings window for Table, type Shear Stress in the Label text field.
Perform an eigenfrequency analysis.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.

3 Find the Studies subsection. In the Select Study tree, select General Studies> Eigenfrequency.

4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

I In the Model Builder window, right-click Study 2 and choose Rename.
2 In the Rename Study dialog box, type Eigenfrequency Study: Beam in the New label text field.

3 Click OK.

Step I: Eigenfrequency

Before computing the study, increase the desired number of eigenfrequencies.
I In the Settings window for Eigenfrequency, locate the Study Settings section.
2 Select the Desired number of eigenfrequencies check box.
3 In the associated text field, type 20.
4 In the Home toolbar, click Compute.

RESULTS

Mode Shape (beam)
I In the Settings window for 3D Plot Group, locate the Data section.
2 From the Eigenfrequency (Hz) list, choose 51.956.
3 In the Mode Shape (beam) toolbar, click Plot.
The following steps illustrate how to use the Beam Cross Section interface to compute beam physical properties and evaluate stresses within a cross section.

Datasets

Start by evaluating the section forces at the fixed end of the beam. These values are needed to get an accurate stress distribution within the beam cross section. To make it possible to change this location we start by creating a Cut Point.

Cut Point 3D I
I In the Results toolbar, click Cut Point 3D.
2 In the Settings window for Cut Point 3D, locate the Point Data section.
3 In the \mathbf{X} text field, type 0.
4 In the \mathbf{Y} text field, type 0.

5 In the \mathbf{Z} text field, type 0.

Point Evaluation 6

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Section Forces in the Label text field.
3 Locate the Data section. From the Dataset list, choose Cut Point 3D I.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
beam. Nxl	N	N
beam. Mzl	$\mathrm{N} * \mathrm{~m}$	M 1
beam. Tyl	N	T 2
beam.Myl	$\mathrm{N} * \mathrm{~m}$	M 2
beam. Tzl	N	T 1
beam. Mxl	$\mathrm{N} * \mathrm{~m}$	Mt

5 Click Evaluate.

Table 6

I In the Model Builder window, under Results $>$ Tables click Table 6.
2 In the Settings window for Table, type Section Forces in the Label text field.

ADD COMPONENT

In the Model Builder window, right-click the root node and choose Add Component>2D.

ADD PHYSICS

I In the Home toolbar, click Add Physics to open the Add Physics window.
2 Go to the Add Physics window.
3 In the tree, select Structural Mechanics>Beam Cross Section (bcs).
4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Study I and Study 2.

5 Click Add to Component 2 in the window toolbar.
6 In the Home toolbar, click Add Physics to close the Add Physics window.

ROOT

In the Model Builder window, click the root node.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for the Beam (beam) interface.

5 Click Add Study in the window toolbar.
6 From the Home menu, choose Add Study.

COMPONENT 2 (COMP2)

I In the Model Builder window, collapse the Component 2 (comp2) node.
2 Right-click Study 3 and choose Rename.
3 In the Rename Study dialog box, type Stationary Study: Beam Cross Section in the New label text field.

4 Click OK.

Use the predefined Generic C-beam geometry part to draw the beam section geometry.

GEOMETRY 2

In the Model Builder window, under Component 2 (comp2) click Geometry 2.

PART LIBRARIES

I In the Home toolbar, click Windows and choose Part Libraries.
2 In the Part Libraries window, select Structural Mechanics Module>Beams>Generic> C_beam_generic in the tree.

3 Click Add to Geometry.

GEOMETRY 2

Generic C-beam I (pil)

I In the Model Builder window, under Component 2 (comp2)>Geometry 2 click Generic Cbeam I (pil).

2 In the Settings window for Part Instance, locate the Input Parameters section.

3 In the table, enter the following settings:

Name	Expression	Value	Description
d	h2	0.05 m	Beam height
b	h1	0.025 m	Flange width
tw	t1	0.005 m	Web thickness
tf	t2	0.006 m	Flange thickness
rl	$2[\mathrm{~mm}]$	0.002 m	Web fillet radius
r2	0	0 mm	Flange fillet radius
slope	0	0	Flange slope [\%]
u	0	0 mm	Flange thickness evaluation location

Form Union (fin)
I In the Model Builder window, click Form Union (fin).
2 Click Build Selected.
3 Click the Zoom Extents button in the Graphics toolbar.

BEAM CROSS SECTION (BCS)

Input the section force data evaluated previously from the Beam into Beam Cross Section.
To automate this process of transferring the section forces at any arbitrary location, create a model method first.

I In the Model Builder window, under Component 2 (comp2) click Beam Cross Section (bcs).

NEW METHOD

I In the Developer toolbar, click New Method.
2 In the New Method dialog box, type EvaluateSectionForces in the Name text field.

3 Click OK.

APPLICATION BUILDER

I Copy the following code into the EvaluateSectionForces window:

```
double Len = model.param().evaluate("L");
String xPos = xp;
try {
    double xP = Double.valueOf(xp);
    if (xP < 0) {
        alert("Evaluation point out of range. Using the root of the beam for
evaluation.", "Evaluation point out of range warning");
    xPos = "0"
    }
```

```
        if (xP > Len) {
    alert("Evaluation point out of range. Using the tip of the beam for
evaluation.", "Evaluation point out of range warning");
            xPos = "L";
        }
} catch (Exception e) {
}
with(model.result().dataset("cpt1"));
    set("pointx", xPos);
endwith();
double[][] SecForce = model.result().numerical("pev6").getReal();
with(model.component("comp2").physics("bcs").prop("UserInput"));
    set("N", Double.toString(SecForce[0][0]));
    set("M1", Double.toString(SecForce[1][0]));
    set("T2", Double.toString(SecForce[2][0]));
    set("M2", Double.toString(SecForce[3][0]));
    set("T1", Double.toString(SecForce[4][0]));
    set("Mt", Double.toString(SecForce[5][0]));
endwith();
```

2 In the Application Builder window, under Methods click EvaluateSectionForces.
3 In the Settings window for Method, locate the Inputs and Output section.

4 Click Add.

5 Find the Inputs subsection. In the table, enter the following settings:

Name	Type	Default	Description	Unit
$x p$	String	0		

METHODS

EvaluateSectionForces

In the Home toolbar, click Model Builder to switch to the main desktop.

GLOBAL DEFINITIONS

EvaluateSectionForces I

I In the Home toolbar, click Method Call and choose EvaluateSectionForces.
Run the method EvaluateSectionForces to transfer the cross section forces in Beam Cross Section interface.

2 Click Run Method Call and choose EvaluateSectionForces I.

STATIONARY STUDY: BEAM CROSS SECTION

Click Compute.
Evaluate the beam physical properties required for the Beam interface.

RESULTS

Section Properties

In the Model Builder window, right-click Section Properties and choose Evaluate>New Table.

Table 7

I In the Model Builder window, under Results>Tables click Table 7.
2 In the Settings window for Table, type Section Properties in the Label text field.

BEAM (BEAM)

In the Model Builder window, under Component I (compl) click Beam (beam).

Cross Section Data 2

I In the Physics toolbar, click Edges and choose Cross Section Data.
2 Select Edge 1 only.
3 In the Settings window for Cross Section Data, locate the Basic Section Properties section.
4 In the A text field, type comp2.bcs.A.
5 In the $I_{z z}$ text field, type comp2. bcs. I 1 .
6 In the e_{z} text field, type comp2.bcs.ei1.
7 In the $I_{y y}$ text field, type comp2.bcs.I2.
8 In the e_{y} text field, type comp2.bcs.ei2.
9 In the J text field, type comp2.bcs.J.
10 Click to expand the Stress Evaluation Properties section. In the h_{y} text field, type comp2.bcs.h2.

II In the h_{z} text field, type comp2.bcs.h1.
12 In the w_{t} text field, type comp2.bcs.Wt.
I3 In the μ_{y} text field, type comp2.bcs.mu2.
14 In the μ_{z} text field, type comp2. bcs.mu1.

Section Orientation I

I In the Model Builder window, expand the Cross Section Data 2 node, then click Section Orientation I.

2 In the Settings window for Section Orientation, locate the Section Orientation section.
3 Specify the P vector as

0	X
0	Y
1	Z

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for the Beam Cross Section (bcs) interface.
5 Click Add Study in the window toolbar.
6 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 4

I In the Model Builder window, click Study 4.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 Right-click Study 4 and choose Rename.
5 In the Rename Study dialog box, type Stationary Study: Beam (Inputs from Beam Cross Section) in the New label text field.

6 Click OK.

Step I: Stationary

Some cross section properties are now defined using a dependent variable from the Beam Cross Section Interface. An example is the torsional section modulus defined as comp2.bcs.Wt. Follow the steps below to get access to these variables in this study.

I In the Settings window for Stationary, click to expand the Values of Dependent Variables section.

2 Find the Values of variables not solved for subsection. From the Settings list, choose User controlled.

3 From the Method list, choose Solution.
4 From the Study list, choose Stationary Study: Beam Cross Section, Stationary.

5 Locate the Study Extensions section. Select the Define load cases check box.
6 Click Add.
7 In the table, enter the following settings:

Load case	edge	Weight	point	Weight
Point Load		1.0	$\sqrt{ }$	1.0

8 In the Home toolbar, click Compute.
Compare the von Mises stress for the two cross sections.

Point Evaluation 7

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type von Mises Stress in the Label text field.

3 Locate the Data section. From the Parameter selection (Load case) list, choose First.
4 Select Point 1 only.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Model>Component l>Beam>Stress>beam.mises - von Mises stress - N/m².

6 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
beam.mises	MPa	von Mises stress

7 Click Evaluate.
8 Locate the Data section. From the Dataset list, choose
Stationary Study: Beam (Inputs from Beam Cross Section)/Solution 4 (5) (sol4).
9 Click Evaluate.
Table 8
I In the Model Builder window, under Results>Tables click Table 8.
2 In the Settings window for Table, type von Mises Stress in the Label text field.
Finally modify Study I and Study $\mathbf{2}$ so that you can re-compute the solution later.

STATIONARY STUDY: BEAM
Step I: Stationary
I In the Model Builder window, under Stationary Study: Beam click Step I: Stationary.

2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (comp I)>Beam (beam)> Cross Section Data 2.

5 Click Disable.

EIGENFREQUENCY STUDY: BEAM

Step I: Eigenfrequency
I In the Model Builder window, under Eigenfrequency Study: Beam click Step I: Eigenfrequency.
2 In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.

3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (comp I)>Beam (beam)> Cross Section Data 2.

5 Click Disable.

Friction Between Contacting Rings

Introduction

This is a benchmark model involving stick-slip friction of a ring rolling inside another ring. The displacement of the inner ring is computed and compared to the analytical result (Ref. 1).

Model Definition

As illustrated in Figure 1, the geometry consists of two rings. The outer ring is 4 mm thick and has an inner radius of 156 mm . The inner ring has an inner radius of 100 mm and a thickness of 11.5 mm .

Figure 1: Model geometry.
The outer ring is fixed and rigid. Thus for the contact analysis only its mesh is required, without any physics attached. The inner ring is subjected to a prescribed rotation phi at its origin.

At the center of rotation, the resultant of the gravity load $(P=500 \mathrm{~N})$ is applied to the inner ring.

A friction coefficient with the value 1 is used.

Results and Discussion

The analytical solution of the problem can be described as follows. The inner ring rolls along the outer ring until the tangential component of the gravity load becomes equal to the friction force (see Figure 2). At this critical point, slip occurs and the elevation of the inner ring reaches its maximum value.

Figure 2: Representation of the contact and friction forces and the resultant of the gravity load.

The contact force corresponds to the normal component of the gravity load, $T n=P \sin (\alpha)$. In this problem, the friction coefficient is 1 , thus $T n=T t$ when sliding. As the critical position is reached when $T t=P \cos (\alpha)$, the critical angle is $\alpha=45^{\circ}$.

The maximum rolling distance is then $L=R \cdot \pi / 4=122.5 \mathrm{~mm}$.
The vertical displacement of the center of the inner ring is defined as
$Y=(R-r)(1-\cos (\alpha))$, where R is the inner radius of the outer ring and r is the outer radius of the inner ring. The maximum vertical displacement $Y_{\max }=13 \mathrm{~mm}$ is reached at $\alpha=45^{\circ}$.

Figure 3 shows the von Mises stress distribution in the inner ring at the final step.

Figure 3: Stress distribution.
In Figure 4, you can see the elevation of the center of the inner ring with respect to its rotation angle.

Figure 4: Elevation of the inner ring center versus applied rotation angle.
The computed maximum elevation is about 13 mm , and is in excellent agreement with the analytical solution.

Figure 5 shows the contact pressure on the outer ring with respect to its length. The peak of the contact pressure occurs at 123 mm , as predicted by the analytical solution.

Figure 5: Contact pressure versus length of the outer ring.

Notes About the COMSOL Implementation

A rigid connector is used to prescribe the rotation of the inner ring, while leaving the translation free so that it can follow the curvature of the outer ring. The rigid connector is attached to the inner boundary of the inner ring.

Since the outer ring is assumed fixed and rigid, it requires no physics. By selecting the Source external to current physics check box in the contact node, it is sufficient to define a mesh on its the boundary.

To capture the transition between stick friction and slip friction, a small continuation parameter step is used. Furthermore, the augmented Lagrangian method is better suited for problems dominated by stick-slip friction than the default penalty method, and is thus used in this example.

The model is not stable in its initial configuration; there are possible rigid body displacements before contact is established. To stabilize it, you add a small spring which is only active in the first parameter step.

Reference

1. Q. Feng and N.K. Prinja, "NAFEMS Benchmark Tests for Finite Element Modeling of Contact, Gapping and Sliding," NAFEMS R0081, 2001.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/contacting_rings

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD
I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
r 1	$160[\mathrm{~mm}]$	0.16 m	Outer ring radius
r 2	$111.5[\mathrm{~mm}]$	0.1115 m	Inner ring radius
t 1	$4[\mathrm{~mm}]$	0.004 m	Outer ring thickness

Name	Expression	Value	Description
t2	$11.5[\mathrm{~mm}]$	0.0115 m	Inner ring thickness
y0	$111.5[\mathrm{~mm}]-156[\mathrm{~mm}]$	-0.0445 m	Inner ring center initial y-position

GEOMETRY I
Circle I (cl)
I In the Geometry toolbar, click Circle.
Only the inner surface of the outer ring needs to be modeled.
2 In the Settings window for Circle, locate the Object Type section.
3 From the Type list, choose Curve.
4 Locate the Size and Shape section. In the Radius text field, type r1-t1.
5 In the Sector angle text field, type 90.
6 Locate the Rotation Angle section. In the Rotation text field, type -95.
7 Click to expand the Layers section. Click Build Selected.
Circle 2 (c2)
I In the Geometry toolbar, click Circle.
2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type r2.
4 In the Sector angle text field, type 90.
5 Locate the Position section. In the y text field, type yo.
6 Locate the Rotation Angle section. In the Rotation text field, type -95.
7 Locate the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	t2

8 Click Build Selected.
Delete Entities I (dell)
I In the Model Builder window, right-click Geometry I and choose Delete Entities.
2 In the Settings window for Delete Entities, locate the Entities or Objects to Delete section.
3 From the Geometric entity level list, choose Domain.
4 On the object c2, select Domain 1 only.

Delete Entities 2 (del2)
I Right-click Geometry I and choose Delete Entities.
2 On the object $\mathbf{c l}$, select Boundaries 2 and 3 only.
3 In the Settings window for Delete Entities, click Build Selected.

Form Union (fin)

I In the Model Builder window, under Component I (comp I)>Geometry I click Form Union (fin).

2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
3 From the Action list, choose Form an assembly.
4 Click Build Selected.

DEFINITIONS

Variables I

I In the Home toolbar, click Variables and choose Local Variables.
2 In the Settings window for Variables, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 1 only.
5 Locate the Variables section. In the table, enter the following settings:

Name	Expression	Unit	Description
L	$(\mathrm{r} 1-\mathrm{t} 1) *(\operatorname{atan2}(-\mathrm{y},-\mathrm{x})-$ $\mathrm{pi} / 2)$	m	Length of the outer ring

Contact Pair I (pl)

I In the Definitions toolbar, click Pairs and choose Contact Pair.
2 In the Settings window for Pair, locate the Source Boundaries section.

3 Click Paste Selection.

4 In the Paste Selection dialog box, type 1 in the Selection text field.
5 Click OK.
6 In the Settings window for Pair, locate the Destination Boundaries section.
7 Select the Activate selection toggle button.
8 Click Paste Selection.
9 In the Paste Selection dialog box, type 4 in the Selection text field.
IO Click OK.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$210[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	7850	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

SOLID MECHANICS (SOLID)

Contact I

I In the Model Builder window, under Component I (compl) right-click Solid Mechanics (solid) and choose Pairs>Contact.

Use the augmented Lagrange method to evaluate the stick-slip contact.
2 In the Settings window for Contact, locate the Contact Method section.
3 From the Formulation list, choose Augmented Lagrangian.
4 Select the Source external to current physics check box.
5 Locate the Pair Selection section. Under Pairs, click Add.
6 In the Add dialog box, select Contact Pair I (pI) in the Pairs list.
7 Click OK.
Friction I
I In the Physics toolbar, click Attributes and choose Friction.
2 In the Settings window for Friction, locate the Friction Parameters section.
3 In the μ text field, type 1.
4 Click the Show More Options button in the Model Builder toolbar.
5 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.

6 Click OK.
7 In the Settings window for Friction, click to expand the Advanced section.
8 Select the Store accumulated slip check box.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
phi	O[rad $]$	0 rad	Inner ring rotation angle
SOLID MECHANICS (SOLID)			

Rigid Connector I

I In the Physics toolbar, click Boundaries and choose Rigid Connector.
2 Select Boundary 5 only.
3 In the Settings window for Rigid Connector, locate the Center of Rotation section.
4 From the list, choose User defined.
5 Specify the \mathbf{X}_{c} vector as

0	x
y0	y

6 Locate the Prescribed Rotation section. From the By list, choose Prescribed rotation.
7 In the ϕ_{0} text field, type -phi.

Applied Force I

I In the Physics toolbar, click Attributes and choose Applied Force.
2 In the Settings window for Applied Force, locate the Applied Force section.
3 Specify the \mathbf{F} vector as

0	x

$-500 y$
Rigid Connector I
In the Model Builder window, click Rigid Connector I.
Spring Foundation I
I In the Physics toolbar, click Attributes and choose Spring Foundation.
2 In the Settings window for Spring Foundation, locate the Spring section.

3 In the \mathbf{k}_{u} text field, type 1e6* (phi==0).
4 Locate the Rotational Spring section. In the k_{θ} text field, type $1 \mathrm{e} 6^{*}(\mathrm{phi}==0)$.

MESH I

Mapped I

In the Model Builder window, under Component I (compl) right-click Mesh I and choose Mapped.

Distribution I

I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundary 2 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 3.

Distribution 2

I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundary 4 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 60.

Edge I

I In the Model Builder window, right-click Mesh I and choose More Operations>Edge.
2 Select Boundary 1 only.
Distribution I
I Right-click Edge I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 100.
4 Click Build AII.

STUDY I

Step I: Stationary
Set up an auxiliary continuation sweep for the phi parameter.
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Results While Solving section.
3 Select the Plot check box.

4 From the Update at list, choose Steps taken by solver.
5 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
6 Click Add.
7 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
phi (Inner ring rotation angle)	range $(0, \mathrm{pi} / 120, \mathrm{pi} / 6)$	rad

Solution I (soll)
I In the Study toolbar, click Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node.
3 In the Model Builder window, expand the Study I $>$ Solver Configurations>
Solution I (sol I)>Dependent Variables I node, then click Contact pressure (compl.solid.Tn_pl).

4 In the Settings window for Field, locate the Scaling section.
5 In the Scale text field, type 1 e 5.
6 In the Model Builder window, click Friction force (spatial frame) (compl.solid.Tt_pl).
7 In the Settings window for Field, locate the Scaling section.
8 In the Scale text field, type 1 e5.
9 In the Model Builder window, expand the Study I $>$ Solver Configurations> Solution I (solI)>Stationary Solver I node, then click Parametric I.

10 In the Settings window for Parametric, click to expand the Continuation section.
II Select the Tuning of step size check box.
12 In the Initial step size text field, type pi/1000.
I3 In the Maximum step size text field, type pi/1000.
14 In the Minimum step size text field, type pi/10000.
I5 In the Model Builder window, expand the Study I>Solver Configurations>
Solution I (solI)>Stationary Solver I>Segregated I node, then click Solid Mechanics.
16 In the Settings window for Segregated Step, click to expand the Method and Termination section.

17 In the Number of iterations text field, type 15.
I8 In the Model Builder window, under Study I>Solver Configurations>Solution I (soll) click Compile Equations: Stationary.

19 Click Compute to Selected.

RESULTS

Stress (solid)

Create a marker to make it easier to track the rotation of the inner ring. One way of doing it is to add an arrow to the default plot, which is generated below.

Point Trajectories I

I In the Stress (solid) toolbar, click More Plots and choose Point Trajectories.
2 In the Settings window for Point Trajectories, locate the Trajectory Data section.
3 In the X-expression text field, type solid.u_rig1.
4 In the \mathbf{Y}-expression text field, type $\mathrm{y} 0+$ solid.v_rig1.
5 Locate the Coloring and Style section. Find the Point style subsection. From the Type list, choose Arrow.

6 In the Arrow, \mathbf{X} component text field, type $\cos (\mathrm{phi}+5[\mathrm{deg}])$.
7 In the Arrow, Y component text field, type sin(-phi-5[deg]).
8 From the Arrow type list, choose Cone.
9 From the Arrow base list, choose Head.
10 From the Color list, choose Black.

STUDY I

In the Home toolbar, click Compute.

RESULTS

ID Plot Group 4
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, locate the Legend section.
3 From the Position list, choose Upper left.
4 In the Label text field, type Rigid body y-displacement.

Global I

I Right-click Rigid body y-displacement and choose Global.
2 In the Settings window for Global, click Replace Expression in the upper-right corner of the \mathbf{y}-axis data section. From the menu, choose Component I>Solid Mechanics> Rigid connectors $>$ Rigid Connector $1>$ Rigid body displacement (spatial frame) -m> solid.rigl.v-Rigid body displacement, y component.

3 In the Rigid body y-displacement toolbar, click Plot.

ID Plot Group 5

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, locate the Data section.
3 From the Parameter selection (phi) list, choose Last.

Line Graph I

I Right-click ID Plot Group 5 and choose Line Graph.
2 Select Boundary 1 only.
3 In the Settings window for Line Graph, locate the \mathbf{y}-Axis Data section.
4 In the Expression text field, type dst2src_p1(solid.Tn_p1).
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type L.
7 From the Unit list, choose mm.
8 In the ID Plot Group 5 toolbar, click Plot.

ID Plot Group 5

I In the Model Builder window, under Results click ID Plot Group 5.
2 In the Settings window for ID Plot Group, type Contact pressure along outer ring in the Label text field.

Edge 2D I

I In the Results toolbar, click More Datasets and choose Edge 2D.
2 Select Boundary 4 only.
Parametric Extrusion ID I
In the Results toolbar, click More Datasets and choose Parametric Extrusion ID.

2D Plot Group 6

I In the Results toolbar, click 2D Plot Group.
2 In the Settings window for 2D Plot Group, locate the Data section.
3 From the Dataset list, choose Parametric Extrusion ID I.

Surface I

I Right-click 2D Plot Group 6 and choose Surface.
2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics>Contact> Friction>solid.sliptot - Accumulated slip - m.

Height Expression I
I Right-click Surface I and choose Height Expression.
2 In the 2D Plot Group 6 toolbar, click Plot.

Cylinder Roller Contact

Introduction

Consider an infinitely long steel cylinder resting on a flat aluminum foundation, where both structures are elastic. The cylinder is subjected to a point load along its top. The objective of this study is to find the contact pressure distribution and the length of contact between the foundation and the cylinder. An analytical solution exists, and this tutorial includes a comparison with the COMSOL Multiphysics solution. The application is based on a NAFEMS benchmark (see Ref. 1).

Model Definition

This is a plane strain problem and the 2D Solid Mechanics interface from the Structural Mechanics Module is thus suitable. The 2D geometry is further cut in half at the vertical symmetry axis.

Figure 1: Model geometry.
In 2D, the cylinder is subjected to a point load along its top with an intensity of $35 \mathrm{kN} /$ mm . Both the cylinder and block material are elastic, homogeneous, and isotropic.

The contact modeling in this example only includes the frictionless part of the example described in Ref. 1. The problem is implemented with the Solid Mechanics interface, and two studies are set up to compare the default penalty contact method and the augmented Lagrangian method.

Results and Discussion

Figure 2 depicts the deformed shape and the von Mises stress distribution obtained with the penalty contact method.

Figure 2: Deformation and von Mises stress at the contact area.
The analytical solution for the contact pressure as a function of the x-coordinate is

$$
\begin{gathered}
P=\sqrt{\frac{F_{n} E^{\prime}}{2 \pi R^{\prime}} \times\left(1-\left(\frac{x}{a}\right)^{2}\right)} \\
a=\sqrt{\frac{8 F_{n} R^{\prime}}{\pi E^{\prime}}}
\end{gathered}
$$

where F_{n} is the applied load per unit length, $E^{\prime \prime}$ is the combined elasticity modulus, and R^{\prime} is the combined radius. The combined Young's modulus and radius are defined as:

$$
\begin{gathered}
E^{\prime}=\frac{2 E_{1} E_{2}}{E_{2}\left(1-v_{1}^{2}\right)+E_{1}\left(1-v_{2}^{2}\right)} \\
R^{\prime}=\lim _{R_{2} \rightarrow \infty} \frac{R_{1} R_{2}}{R_{1}+R_{2}}=R_{1}
\end{gathered}
$$

In these equations, E_{1} and E_{2} are Young's modulus of the roller and the block, respectively, and R_{1} is the radius of the roller. Combining these equations results in a contact length of 6.21 mm and a maximum contact pressure of 3585 MPa .

Figure 3 depicts the contact pressure along the contact area for both the analytical and the two COMSOL Multiphysics solutions.

Figure 3: Analytical pressure distribution (dashed line) and COMSOL Multiphysics solution (solid lines).

Notes About the COMSOL Implementation

The Structural Mechanics Module supports contact boundary conditions using contact pairs. The contact pair is defined by a source boundary and a destination boundary. The destination boundary is the one which is coupled to the source boundary if contact is established. The terms source and destination should be interpreted as in "the destination receives its displacements from the source." As a result, the contact pressure variable is
available on the destination boundary. The mesh on the destination side should always be finer than on the source side.

In this example, the contact boundary pair consists of a flat source boundary and a curved destination boundary.

When using the penalty method, the cylinder is initially stabilized with a weak spring. In a second step, the spring is removed to arrive at the final solution.

To reduce the number of iteration steps and improve convergence when using the augmented Lagrangian method, it is good practice to set an initial contact pressure as close to the anticipated solution as possible. A good approximation is to use the value of the external pressure - in this case the external point load divided by an estimated contact length and the thickness. In this example, it is necessary to specify an initial contact pressure to make the model stable with respect to the initial conditions, because the initial configuration - where the cylinder is free to move in the vertical direction - is singular.

The small size of the contact region necessitates a local mesh refinement. Use a free mesh for the cylindrical domain and a mapped mesh for the aluminum block. The block geometry requires some modification to set up a refined mesh area.

References

1. A.W.A. Konter, Advanced Finite Element Contact Benchmarks, NAFEMS, 2006.
2. M.A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, volume

2: Advanced Topics, John Wiley \& Sons, London, 1997.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/cylinder_roller_contact

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file cylinder_roller_contact.txt.

DEFINITIONS

Variables I

I In the Home toolbar, click Variables and choose Local Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit		
p_analytical	pmax*sqrt $\left(1-(x / a)^{\wedge} 2\right)$	$\mathrm{N} / \mathrm{m}^{2}$		Analytical contact
:---				
pressure				

GEOMETRY I
I In the Model Builder window, under Component I (compl) click Geometry I.
2 In the Settings window for Geometry, locate the Units section.
3 From the Length unit list, choose mm.
Now create the geometry. Recall that you only need to model one half of the 2 D cross section.

Circle I (cl)
I In the Geometry toolbar, click Circle.

2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type R.
4 In the Sector angle text field, type 180.
5 Locate the Position section. In the \boldsymbol{y} text field, type R+dist.
6 Locate the Rotation Angle section. In the Rotation text field, type -90.
7 Click Build Selected.
Rectangle I (rl)
I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type d/2.
4 In the Height text field, type d.
5 Locate the Position section. In the y text field, type - d.
6 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (mm)
Layer 1	$\mathrm{~d} / 2$

7 Click Build Selected.
8 Click the Zoom Extents button in the Graphics toolbar.
Square I (sql)
I In the Geometry toolbar, click Square.
2 In the Settings window for Square, locate the Size section.
3 In the Side length text field, type R/2.
4 Locate the Position section. In the \boldsymbol{y} text field, type $-\mathrm{R} / 2$.
5 Click Build Selected.
Point I (ptl)
I In the Geometry toolbar, click Point.
2 In the Settings window for Point, locate the Point section.
3 In the \boldsymbol{y} text field, type dist.

Rotate I (rotl)

I In the Geometry toolbar, click Transforms and choose Rotate.
2 Select the object ptI only.
3 In the Settings window for Rotate, locate the Rotation section.
4 In the Angle text field, type 10.
5 Locate the Center of Rotation section. In the \boldsymbol{y} text field, type R+dist.

6 Click Build Selected.

Convert to Solid I (csoll)

I In the Geometry toolbar, click Conversions and choose Convert to Solid.
2 Click in the Graphics window and then press Ctrl+A to select all objects.

3 Click Build Selected.

Form Union (fin)

I In the Model Builder window, under Component I (comp I)>Geometry I click Form Union (fin).

2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
3 From the Action list, choose Form an assembly.
4 Clear the Create pairs check box.

Mesh Control Domains I (mcdl)

I In the Geometry toolbar, click Virtual Operations and choose Mesh Control Domains.
2 On the object fin, select Domains l-3 only.
3 In the Geometry toolbar, click Build All.
The model geometry is now complete.

DEFINITIONS

Contact Pair I (pl)

I In the Definitions toolbar, click Pairs and choose Contact Pair.
2 Select Boundary 3 only.
3 In the Settings window for Pair, locate the Destination Boundaries section.
4 Select the Activate selection toggle button.
5 Select Boundary 7 only.

SOLID MECHANICS (SOLID)

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the Thickness section.
3 In the d text field, type th.

Symmetry I

I In the Physics toolbar, click Boundaries and choose Symmetry.
2 Select Boundaries 1, 4, and 5 only.

Fixed Constraint I

I In the Physics toolbar, click Boundaries and choose Fixed Constraint.
2 Select Boundary 2 only.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 5 only.
Use only half the total load since you only model one symmetry half of the full geometry.

3 In the Settings window for Point Load, locate the Force section.
4 Specify the \mathbf{F}_{P} vector as

0	x
$-F n / 2$	y

Contact I

I In the Physics toolbar, in the Boundary section, click Pairs and choose Contact.
2 In the Settings window for Contact, locate the Pair Selection section.
3 Under Pairs, click Add.
4 In the Add dialog box, select Contact Pair I (pI) in the Pairs list.

5 Click OK.

Attach a spring to the cylinder in order to prevent rigid body motion before the contact is detected.

Spring Foundation I

I In the Physics toolbar, click Points and choose Spring Foundation.
2 Select Point 5 only.
3 In the Settings window for Spring Foundation, locate the Spring section.
4 In the \mathbf{k}_{P} text field, type k .

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	E 1	Pa	Basic
Poisson's ratio	nu	nu0	I	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

Material 2 (mat2)
I Right-click Materials and choose Blank Material.
2 Select Domain 2 only.
3 In the Settings window for Material, locate the Material Contents section.
4 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	E2	Pa	Basic
Poisson's ratio	nu	nu0	I	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

The analytical solution to this problem assumes that engineering strains are used. Since the solution of a contact problem forces the study step to be geometrically nonlinear, you must explicitly enforce a linear strain representation.

SOLID MECHANICS (SOLID)

Linear Elastic Material I

I In the Model Builder window, under Component I (compl)>Solid Mechanics (solid) click Linear Elastic Material I.

2 In the Settings window for Linear Elastic Material, locate the Geometric Nonlinearity section.

3 Select the Force linear strains check box.

MESH

Free Triangular I

I In the Model Builder window, under Component I (compl) right-click Mesh I and choose Free Triangular.

2 In the Settings window for Free Triangular, locate the Domain Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domain 2 only.
Size I
I Right-click Free Triangular I and choose Size.
2 In the Settings window for Size, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 7 only.
5 Locate the Element Size section. Click the Custom button.
6 Locate the Element Size Parameters section. Select the Maximum element size check box.
7 In the associated text field, type 0.6.
8 Click Build AII.

Mapped I

I In the Model Builder window, right-click Mesh I and choose Mapped.
2 In the Settings window for Mapped, click to expand the Control Entities section.
3 Clear the Smooth across removed control entities check box.

Distribution I

I Right-click Mapped I and choose Distribution.
2 Select Boundaries 3, 10, and 11 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 20.
Distribution 2
I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundary l only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 10.
5 Click Build AII.

STUDY I

Step I: Stationary
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Auxiliary sweep check box.

4 Click Add.

5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
k (Spring coefficient)	Fn/dist/5 0	$\mathrm{~N} / \mathrm{m}$

6 In the Model Builder window, click Study I.
7 In the Settings window for Study, type Study 1: Penalty in the Label text field.
8 In the Home toolbar, click Compute.

RESULTS

Surface I

I In the Model Builder window, expand the Results>Stress (solid) node, then click Surface I.
2 In the Settings window for Surface, locate the Expression section.
3 From the Unit list, choose MPa.
4 In the Stress (solid) toolbar, click Plot.
Because the point load gives a singular stress at the top of the cylinder, adjust the color range to see the stress distribution around the contact region better.

5 Click to expand the Range section. Select the Manual color range check box.
6 In the Maximum text field, type 2500.
7 In the Stress (solid) toolbar, click Plot.
ID Plot Group 4
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, locate the Data section.
3 From the Parameter selection (k) list, choose Last.
Line Graph I
I Right-click ID Plot Group 4 and choose Line Graph.
2 Select Boundary 7 only.

3 In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the \mathbf{y}-axis data section. From the menu, choose Model>Component I>Definitions> Variables>p_analytical - Analytical contact pressure - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
4 Locate the y-Axis Data section. From the Unit list, choose MPa.
5 Click Replace Expression in the upper-right corner of the \mathbf{x}-axis data section. From the menu, choose Model>Component $\boldsymbol{I}>$ Geometry $>$ Coordinate (spatial frame) $>x$ - \mathbf{x} coordinate.

6 Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.

7 In the Width text field, type 2.
8 Click to expand the Legends section. Select the Show legends check box.
9 From the Legends list, choose Manual.
10 In the table, enter the following settings:

Legends

Analytical
II In the ID Plot Group 4 toolbar, click Plot.

Line Graph 2

I Right-click Line Graph I and choose Duplicate.
2 In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the \boldsymbol{y}-axis data section. From the menu, choose Model>Component I>Solid Mechanics> Contact>solid.Tn - Contact pressure - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}$.

3 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Solid.

4 Locate the Legends section. In the table, enter the following settings:

Legends
Computed (Penalty)

To avoid oscillations in the contact pressure representation, turn off the refinement within the elements.

5 Click to expand the Quality section. From the Resolution list, choose No refinement.
ID Plot Group 4
I In the Model Builder window, click ID Plot Group 4.
2 In the Settings window for ID Plot Group, locate the Plot Settings section.

3 Select the \mathbf{x}-axis label check box.
4 In the associated text field, type Distance from center (mm).
5 Select the \mathbf{y}-axis label check box.
6 In the associated text field, type Contact pressure (MPa).
7 In the ID Plot Group 4 toolbar, click Plot.
Now, solve the model using the augmented Lagrangian contact method.

SOLID MECHANICS (SOLID)

Contact 2

I In the Physics toolbar, in the Boundary section, click Pairs and choose Contact.
2 In the Settings window for Contact, locate the Pair Selection section.
3 Under Pairs, click Add.
4 In the Add dialog box, select Contact Pair I (pI) in the Pairs list.
5 Click OK.
6 In the Settings window for Contact, locate the Contact Method section.
7 From the Formulation list, choose Augmented Lagrangian.
8 Locate the Initial Value section. In the T_{n} text field, type (Fn/2)/(lc*th).

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

Step I: Stationary

I In the Settings window for Stationary, locate the Physics and Variables Selection section.
2 Select the Modify model configuration for study step check box.
3 In the Physics and variables selection tree, select Component I (compl)> Solid Mechanics (solid), Controls spatial frame>Contact I.

4 Click Disable.
5 In the Model Builder window, click Study 2.

6 In the Settings window for Study, locate the Study Settings section.
7 Clear the Generate default plots check box.
8 In the Label text field, type Study 1: Augmented Lagrangian.

Solution 2 (sol2)

I In the Study toolbar, click Show Default Solver.
Adjust the scale for the contact pressure variable based on the analytical solution.
2 In the Model Builder window, expand the Solution 2 (sol2) node.
3 In the Model Builder window, expand the Study I: Augmented Lagrangian> Solver Configurations>Solution 2 (sol2)>Dependent Variables I node, then click Contact pressure (compl.solid.Tn_pl).

4 In the Settings window for Field, locate the Scaling section.
5 In the Scale text field, type 1 e 9.
6 In the Study toolbar, click Compute.
The default plot for the second study was disabled. To visualize the stress and contact forces, change the data set in the 2 D plot group.

RESULTS

Line Graph 3

I In the Model Builder window, under Results> ID Plot Group 4 right-click Line Graph 2 and choose Duplicate.
2 In the Settings window for Line Graph, locate the Data section.
3 From the Dataset list, choose Study I: Augmented Lagrangian/Solution 2 (sol2).
4 Locate the Legends section. In the table, enter the following settings:

Legends

Computed (Augmented Lagrangian)
5 In the ID Plot Group 4 toolbar, click Plot.
Prepare the model for later use by disabling the second contact feature in the first study (Penalty).

STUDY I: PENALTY

Step I: Stationary
I In the Model Builder window, under Study I: Penalty click Step I: Stationary.

2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (compl)> Solid Mechanics (solid), Controls spatial frame>Contact 2.

5 Click Disable.

Stress Analysis of an Elliptic Membrane

General Description

In this benchmark, the static stress analysis described in the NAFEMS Test LE1, "Elliptic Membrane", found on page 5 in Ref. 1 is performed. It is an analysis of a linear elastic plane stress model.

The computed stress level is compared with the values given in the benchmark report.
In addition to the original benchmark, a mesh convergence study is performed.

GEOMETRY

The geometry is an ellipse with an elliptical hole in it. The outer and inner edges are defined by the equations

$$
\begin{gathered}
\left(\frac{X}{3.25}\right)^{2}+\left(\frac{Y}{2.75}\right)^{2}=1 \\
\left(\frac{X}{2}\right)^{2}+\left(\frac{Y}{1}\right)^{2}=1
\end{gathered}
$$

The thickness (which actually does not influence the analysis) is 0.1 m .
Due to symmetry in load and in geometry, the analysis only includes a quarter of the geometry as shown in Figure 1.

Figure 1: The geometry and load. Only the quarter which is analyzed is shown.

MATERIAL

Isotropic with $E=2.1 \cdot 10^{11} \mathrm{~Pa}$ and $v=0.3$.

LOAD

An evenly distributed load of 10 MPa acts along the outward normal of the outer boundary.

CONSTRAINTS

Symmetry conditions are used along the cuts at $X=0$ and $Y=0$.

Model Setup

The Solid Mechanics interface with the plane stress assumption is used.
Four meshes are exactly specified in Ref. 1. The 'coarse' mesh has 6 quadrilateral or 12 triangular elements. The 'fine' mesh has 24 quadrilateral or 48 triangular elements. The triangular elements are created by splitting the quadrilateral elements along a diagonal. The specified meshes are shown in Figure 2 and Figure 3.

For the mesh convergence study, these meshes are uniformly refined using a parameter div. The number of elements along the elliptical boundaries is $3 *$ div and the number of elements along the symmetry cuts is $2 *$ div.

The number of degrees of freedom varies from 48 ($\mathrm{div}=1$ and quadrilaterals with linear shape order) to 935810 (div = 64 and triangles with cubic shape order.)

Figure 2: The meshes as specified in Ref. 1. Left column: 'coarse' (div=1). Right column: 'fine' ($d i v=2$).

Figure 3: A quadrilateral mesh with div=8.

Due to the specification of the benchmark, the modeling differs somewhat from what you would use in practice:

- The interior boundaries in the model are created for matching the specification of the mesh in the NAFEMS benchmark as close as possible. If you were to solve the problem without these constraints, the modeling would be significantly simplified. Only two ellipses would be needed in the Geometry sequence.
- The knowledge about where a stress concentration is expected suggests that you should use a mesh such that more elements are present in the region around point D to get optimal accuracy, see Figure 1.
- Using the possibility to generate a free triangular mesh instead of one where quadrilateral elements are split along the diagonals would also give a mesh with better element quality.

Results and Discussion

The purpose of this test, in addition to a pure verification of the element formulation, is to check how well the software can represent a nontrivial geometrical shape such as an ellipse. It also evaluates the application of a distributed load.

The distribution of the direct stress in the Y direction is shown in Figure 4. As can be seen the result has steep gradients towards the point with maximum values.

Figure 4: The distribution of the σ_{y} stress component using div=4 and second order quadrilateral elements.

The normal stress σ_{y} at the elliptic hole is evaluated at the point D located at $X=2, Y=0$ (see Figure 1). The target value according to Ref. 1 is 92.7 MPa . The value is based on an analytical result. The COMSOL Multiphysics results for the "coarse" and "fine" meshes are given in Table 1.

TABLE I: COMPUTED RESULTS FOR THE MESHES SPECIFIED IN THE BENCHMARK.

STUDY NUMBER	ELEMENT TYPE	DISCRETIZATION	MESH	COMPUTED VALUE	RELATIVE ERROR
$\mathbf{1}$	Quadrilateral	Linear	Coarse	77.4	-16.5%
1	Quadrilateral	Linear	Fine	88.3	-4.7%
2	Quadrilateral	Quadratic	Coarse	91.9	-0.9%
2	Quadrilateral	Quadratic	Fine	93.4	0.8%
3	Quadrilateral	Cubic	Coarse	94.7	2.2%
3	Quadrilateral	Cubic	Fine	93.0	0.3%
4	Triangle	Linear	Coarse	36.0	-61.1%
4	Triangle	Linear	Fine	55.2	-40.4%
5	Triangle	Quadratic	Coarse	70.7	-23.7%

TABLE I: COMPUTED RESULTS FOR THE MESHES SPECIFIED IN THE BENCHMARK.

STUDY NUMBER	ELEMENT TYPE	DISCRETIZATION	MESH	COMPUTED VALUE	RELATIVE ERROR
5	Triangle	Quadratic	Fine	85.6	-7.7%
6	Triangle	Cubic	Coarse	81.7	-11.9%
6	Triangle	Cubic	Fine	90.3	-2.6%

As can be expected, the coarse mesh is not able to capture the stress concentration unless elements with high order are used. Generally the quadrilaterals perform better than the corresponding triangles.

The mesh which is denoted as 'fine' is probably similar to what you would use in an analysis of a larger structure in a case where you are not specifically interested in a high resolution of the stress concentration. Still, with quadratic shape order elements the accuracy is good enough for most engineering purposes, at least for the quadrilateral elements. With the current mesh, the triangular elements will have a small angle at the stress evaluation point, hence the less accurate result.

Using elements with linear shape functions for structural analysis is commonly avoided in the finite element community.

The results of the mesh convergence study are shown in Figure 5. The element size h is defined as $0.417[\mathrm{~m}] / \mathrm{div}$, which is the length of an edge in the element where the stress is measured.

The target value in Ref. $1,92.7 \mathrm{MPa}$, is given with only three digits. This is not accurate enough for the convergence study here. Instead, the error is measured relative to the value 92.65817 MPa, towards which σ_{y} converges.

The convergence behavior is as expected since it is faster for elements with a higher shape function order. It can also be seen that quadrilaterals are somewhat more accurate than triangles for quadratic and cubic elements.

The other two in-plane stress components σ_{x} and $\tau_{x y}$ should both be zero at point D since the boundary is free. In Figure 6 and Figure 7 similar convergence graphs are shown for these stress components.

Figure 5: Error with respect to the stress target value as a function of the element size h.

Figure 6: Error in the stress σ_{x}. The values are normalized with the target for σ_{y}.

Figure 7: Error in the stress $\tau_{x y}$. The values are normalized with the target for σ_{y}.
Since elements with different shape function orders are used, a comparison based only on element size may not be fair when efficiency is considered. The number of degrees of freedom in the model varies a lot for the same element size, and so does the solution time. In Figure 8, the error is shown as a function of the number of degrees of freedom. Also when compared this way, the elements with cubic shape functions have the best performance. This is usually true as long as the solutions are smooth, but it may not be
true, for example, when solving nonlinear problems.

Figure 8: Error with respect to the stress target value as a function of the number of degrees of freedom.

Reference

1. G.A.O. Davies, R.T. Fenner, and R.W. Lewis, Background to Benchmarks, NAFEMS, Glasgow, 1993.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/elliptic_membrane

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value		
div	1	l	Description	sy_ref
:---				

GEOMETRY I
Ellipse I (el)
I In the Geometry toolbar, click Ellipse.
2 In the Settings window for Ellipse, locate the Size and Shape section.
3 In the Sector angle text field, type 90.
4 In the a-semiaxis text field, type 3.25.
5 In the b-semiaxis text field, type 2.75.
Create an extra mesh control ellipse.
Ellipse 2 (e2)
I In the Geometry toolbar, click Ellipse.
2 In the Settings window for Ellipse, locate the Size and Shape section.
3 In the a-semiaxis text field, type 2.417.
4 In the \mathbf{b}-semiaxis text field, type 1.583.
5 In the Sector angle text field, type 90.

Ellipse 3 (e3)
I In the Geometry toolbar, click Ellipse.
2 In the Settings window for Ellipse, locate the Size and Shape section.
3 In the a-semiaxis text field, type 2.
Difference I (difl)
I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
2 Select the objects el and e2 only.
3 In the Settings window for Difference, locate the Difference section.
4 Find the Objects to subtract subsection. Select the Activate selection toggle button.
5 Select the object e3 only.
6 Click Build All Objects.
Line Segment I (IsI)
I In the Geometry toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 Locate the Starting Point section. In the \mathbf{x} text field, type 1.783 and \mathbf{y} to 2.3 .
6 Locate the Endpoint section. In the \mathbf{x} text field, type 1.165 and \mathbf{y} to 0.812 .
Line Segment 2 (Is2)
I In the Geometry toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 Locate the Starting Point section. In the \mathbf{x} text field, type 2.833 and \mathbf{y} to 1.348 .
6 Locate the Endpoint section. In the \mathbf{x} text field, type 1.783 and \mathbf{y} to 0.453 .

MATERIALS

Material I (matl)
I In the Model Builder window, under Component I (comp I) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.

3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$210 \mathrm{E} 3[\mathrm{MPa}]$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	0	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

SOLID MECHANICS (SOLID)

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the 2D Approximation section.
3 From the list, choose Plane stress.
4 Locate the Thickness section. In the d text field, type 0.1.
Symmetry I
I In the Physics toolbar, click Boundaries and choose Symmetry.
2 Select Boundaries 1, 2, 9, and 11 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundaries 15, 18, and 21 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 From the Load type list, choose Pressure.
5 In the p text field, type - 10 [MPa].

MESH I

Mapped I

In the Model Builder window, under Component I (compl) right-click Mesh I and choose Mapped.

Distribution I

I In the Model Builder window, right-click Mapped I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type div.
4 Select Boundaries $1,2,13,16$, and 19 only.

5 Click Build AII.

The default discretization of the displacement field consists of quadratic serendipity shape functions. Change to Lagrange shape functions.

SOLID MECHANICS (SOLID)

I In the Model Builder window, under Component I (compI) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, click to expand the Discretization section.
3 From the Displacement field list, choose Quadratic Lagrange.
Add linear and cubic displacement fields as well. The actual selection of discretization type will be done in each study.
4 Click the Show More Options button in the Model Builder toolbar.
5 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.

6 Click OK.

Discretization I

I In the Physics toolbar, click Global and choose Discretization.
2 In the Settings window for Discretization, locate the Discretization section.
3 From the Displacement field list, choose Linear.
4 In the Label text field, type Discretization Linear.
Discretization Linear I
I Right-click Discretization Linear and choose Duplicate.
2 In the Settings window for Discretization, locate the Discretization section.
3 From the Displacement field list, choose Cubic Lagrange.
4 In the Label text field, type Discretization Cubic.

STUDY I

I In the Model Builder window, click Study I.
2 In the Settings window for Study, type Study Quad Linear in the Label text field.

Parametric Sweep

I In the Study toolbar, click Parametric Sweep.
2 In the Settings window for Parametric Sweep, locate the Study Settings section.
3 Click Add.

14 STRESS ANALYSIS OF AN ELLIPTIC MEMBRANE

4 In the table, enter the following settings:

| Parameter name | Parameter value list | | Parameter unit | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| div (Mesh refinement factor) | 2 3 4 8 12 16 24 32 | 48 | | |

Step I: Stationary
I In the Model Builder window, click Step I: Stationary.
2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
3 In the table, enter the following settings:

Physics interface	Solve for	Discretization
Solid Mechanics (solid)	$\sqrt{ }$	Discretization Linear

ROOT

Add five more studies for the other discretizations and element shapes. The parameter values are copied from the first study.

ADD STUDY

I In the Study toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study in the window toolbar.

STUDY QUAD LINEAR

Parametric Sweep

In the Model Builder window, under Study Quad Linear right-click Parametric Sweep and choose Copy.

STUDY 2

I In the Model Builder window, click Study 2.
2 In the Settings window for Study, type Study Quad Quadratic in the Label text field.
3 Right-click Study Quad Quadratic and choose Paste Parametric Sweep.

ADD STUDY

I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.

3 Click Add Study in the window toolbar.

STUDY 3

I In the Model Builder window, click Study 3.
2 In the Settings window for Study, type Study Quad Cubic in the Label text field.
3 Right-click Study Quad Cubic and choose Paste Parametric Sweep.

Step I: Stationary

I In the Settings window for Stationary, locate the Physics and Variables Selection section.
2 In the table, enter the following settings:

Physics interface	Solve for	Discretization
Solid Mechanics (solid)	$\sqrt{ }$	Discretization Cubic

MESH I
Create a triangular mesh. This mesh case will be the default for the new studies created from now on.

In the Model Builder window, under Component I (compl) right-click Mesh I and choose Duplicate.

MESH 2

In the Settings window for Mesh, type Mesh Tria in the Label text field.

Convert I

Right-click Component I (compI)>Meshes>Mesh Tria and choose More Operations>Convert.

ADD STUDY

I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
3 Click Add Study in the window toolbar.

STUDY 4

I In the Model Builder window, click Study 4.
2 In the Settings window for Study, type Study Tria Linear in the Label text field.
Parametric Sweep
Right-click Study Tria Linear and choose Paste Parametric Sweep.

Step 1: Stationary

I In the Settings window for Stationary, click to expand the Mesh Selection section.
2 Locate the Physics and Variables Selection section. In the table, enter the following settings:

Physics interface	Solve for	Discretization
Solid Mechanics (solid)	$\sqrt{ }$	Discretization Linear

ADD STUDY
I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
3 Click Add Study in the window toolbar.

STUDY 5

I In the Model Builder window, click Study 5.
2 In the Settings window for Study, type Study Tria Quadratic in the Label text field.

Parametric Sweep

Right-click Study Tria Quadratic and choose Paste Parametric Sweep.

ADD STUDY

I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
3 Click Add Study in the window toolbar.
4 In the Study toolbar, click Add Study to close the Add Study window.

Study 6

I In the Model Builder window, click Study 6.
2 In the Settings window for Study, type Study Tria Cubic in the Label text field.
3 Right-click Study Tria Cubic and choose Paste Parametric Sweep.

Step I: Stationary

I In the Settings window for Stationary, locate the Physics and Variables Selection section.
2 In the table, enter the following settings:

Physics interface	Solve for	Discretization
Solid Mechanics (solid)	$\sqrt{ }$	Discretization Cubic

STUDY QUAD LINEAR

In the Study toolbar, click Compute.

STUDY QUAD QUADRATIC

I In the Model Builder window, click Study Quad Quadratic.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 In the Study toolbar, click Compute.

STUDY QUAD CUBIC

I In the Model Builder window, click Study Quad Cubic.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 In the Study toolbar, click Compute.

STUDY TRIA LINEAR

I In the Model Builder window, click Study Tria Linear.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 In the Study toolbar, click Compute.

STUDY TRIA QUADRATIC

I In the Model Builder window, click Study Tria Quadratic.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 In the Study toolbar, click Compute.

STUDY TRIA CUBIC

I In the Model Builder window, click Study Tria Cubic.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 In the Study toolbar, click Compute.

RESULTS

ID Plot Group 3

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Mesh convergence sy at D in the Label text field.

Point Graph I

I Right-click Mesh convergence sy at \mathbf{D} and choose Point Graph.
2 Select Point 11 only.
3 In the Settings window for Point Graph, locate the Data section.
4 From the Dataset list, choose Study Quad Linear/Parametric Solutions I (sol2).
5 Locate the y-Axis Data section. In the Expression text field, type abs (solid. sy/ sy_ref-1).

6 Locate the x-Axis Data section. From the Parameter list, choose Expression.
7 In the Expression text field, type div/0.417.
8 Click to expand the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Cycle.

9 From the Positioning list, choose In data points.
10 Click to expand the Legends section. Select the Show legends check box.
II From the Legends list, choose Manual.
$\mathbf{1 2}$ In the table, enter the following settings:

Legends
1st order quad

Point Graph 2
I Right-click Point Graph I and choose Duplicate.
2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study Quad Quadratic/Parametric Solutions 2 (soll5).
4 Locate the Legends section. In the table, enter the following settings:

Legends

2nd order quad
Point Graph 3
I Right-click Point Graph 2 and choose Duplicate.

2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study Quad Cubic/Parametric Solutions 3 (sol28).
4 Locate the Legends section. In the table, enter the following settings:

Legends

3rd order quad
Point Graph 4
I Right-click Point Graph 3 and choose Duplicate.
2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study Tria Linear/Parametric Solutions 4 (sol4I).
4 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dash-dot.

5 Locate the Legends section. In the table, enter the following settings:

Legends

1st order tria
Point Graph 5
I Right-click Point Graph 4 and choose Duplicate.
2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study Tria Quadratic/Parametric Solutions 5 (sol54).
4 Locate the Legends section. In the table, enter the following settings:
$\frac{\text { Legends }}{\text { 2nd order tria }}$

I Right-click Point Graph 5 and choose Duplicate.
2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study Tria Cubic/Parametric Solutions 6 (sol67).
4 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dash-dot.

5 Locate the Legends section. In the table, enter the following settings:

Legends
3rd order tria

Point Graph 4

I In the Model Builder window, click Point Graph 4.
2 In the Settings window for Point Graph, locate the Coloring and Style section.
3 From the Color list, choose Cycle (reset).
4 Find the Line markers subsection. From the Marker list, choose Cycle (reset).

Mesh convergence sy at D

I In the Model Builder window, click Mesh convergence sy at D.
2 In the Settings window for ID Plot Group, locate the Plot Settings section.
3 Select the \mathbf{x}-axis label check box.
4 In the associated text field, type $1 / \mathrm{h}(1 / \mathrm{m})$.
5 Select the \mathbf{y}-axis label check box.
6 In the associated text field, type Relative error.
7 Click to expand the Title section. From the Title type list, choose None.
8 Locate the Axis section. Select the \mathbf{x}-axis log scale check box.
9 Select the \mathbf{y}-axis log scale check box.
10 Locate the Legend section. From the Position list, choose Lower left.
II In the Mesh convergence sy at D toolbar, click Plot.
Mesh convergence sy at D I
I Right-click Mesh convergence sy at D and choose Duplicate.
2 In the Settings window for ID Plot Group, type Mesh convergence sx at D in the Label text field.

Point Graph I

I In the Model Builder window, expand the Results>Mesh convergence sx at D node, then click Point Graph I.

2 In the Settings window for Point Graph, locate the y-Axis Data section.
3 In the Expression text field, type abs(solid.sx/sy_ref).
4 Do the same modification for all graphs from Point Graph 2 to Point Graph 6.
5 In the Mesh convergence sx at D toolbar, click Plot.

Mesh convergence sx at D I

I In the Model Builder window, right-click Mesh convergence sx at D and choose Duplicate.
2 In the Settings window for ID Plot Group, type Mesh convergence sxy at D in the Label text field.

Point Graph I

I In the Model Builder window, expand the Results>Mesh convergence sxy at D node, then click Point Graph I.

2 In the Settings window for Point Graph, locate the \boldsymbol{y}-Axis Data section.
3 In the Expression text field, type abs(solid.sxy/sy_ref).
4 Do the same modification for all graphs from Point Graph 2 to Point Graph 6.
5 In the Mesh convergence sxy at D toolbar, click Plot.

Mesh convergence sy at D I

I In the Model Builder window, right-click Mesh convergence sy at D and choose Duplicate.
2 In the Settings window for ID Plot Group, type Mesh convergence sy at D (by DOFs) in the Label text field.

Point Graph I

I In the Model Builder window, expand the Results>Mesh convergence sy at D (by DOFs) node, then click Point Graph I.

2 In the Settings window for Point Graph, locate the x-Axis Data section.
3 In the Expression text field, type 12*div^2*1+10*div*1+2+6*div^2*4.
4 Do the same modification for all graphs from Point Graph 2 to Point Graph 6 according to the following table:

5 In the table, enter the following settings:

Name	x-Axis Data Expression
Point Graph 2	12*div^2*4+10*div*2+2+6*div^2*9
Point Graph 3	12*div^2*9+10*div*3+2+6*div^2*16
Point Graph 4	12*div^2*1+10*div* $1+2+6$ * ${ }^{\text {div }}{ }^{\text {2 }}$ *2* 3
Point Graph 5	12*div^2*4+10*div*2+2+6*div^2*2*6
Point Graph 6	12*div^2*9+10*div*3+2+6*div^2*2*10

Mesh convergence sy at D (by DOFs)
I In the Model Builder window, click Mesh convergence sy at D (by DOFs).
2 In the Settings window for ID Plot Group, locate the Plot Settings section.
3 In the \mathbf{x}-axis label text field, type Number of degrees of freedom.
4 In the Mesh convergence sy at D (by DOFs) toolbar, click Plot.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.

2 Select Point 11 only.
3 In the Settings window for Point Evaluation, locate the Data section.
4 From the Dataset list, choose Study Quad Linear/Parametric Solutions I (sol2).
5 From the Parameter selection (div) list, choose From list.
6 In the Parameter values (div) list, choose \mathbf{I} and 2.
7 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I>Solid Mechanics>Stress>Stress tensor (spatial frame) - N/mT solid.sy - Stress tensor, y component.
8 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress, quad linear

9 Click Evaluate.

Point Evaluation 2

I Right-click Point Evaluation I and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study Quad Quadratic/Parametric Solutions 2 (soll5).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress, quad quadratic

5 Click Evaluate.

Point Evaluation 3

I Right-click Point Evaluation 2 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study Quad Cubic/Parametric Solutions 3 (sol28).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress, quad cubic

5 Click Evaluate.
Point Evaluation 4
I Right-click Point Evaluation 3 and choose Duplicate.

2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study Tria Linear/Parametric Solutions 4 (sol4I).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress, tria linear

5 Click Evaluate.

Point Evaluation 5

I Right-click Point Evaluation 4 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study Tria Quadratic/Parametric Solutions 5 (sol54).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress, tria quadratic

5 Click Evaluate.

Point Evaluation 6

I Right-click Point Evaluation 5 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study Tria Cubic/Parametric Solutions 6 (sol67).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress, tria cubic

5 Click Evaluate.
Stress (solid)
I In the Model Builder window, click Stress (solid).
2 In the Settings window for 2D Plot Group, locate the Data section.
3 From the Dataset list, choose Study Quad Quadratic/Parametric Solutions 2 (soll5).
4 From the Parameter value (div) list, choose 4.
Surface I
I In the Model Builder window, expand the Stress (solid) node, then click Surface I.

2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics>Stress> Stress tensor (spatial frame) - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}>$ solid.sy - Stress tensor, \boldsymbol{y} component.

3 Locate the Expression section. From the Unit list, choose MPa.
4 In the Stress (solid) toolbar, click Plot.

Stress (solid)

I In the Model Builder window, click Stress (solid).
2 In the Settings window for 2D Plot Group, locate the Color Legend section.
3 Select the Show maximum and minimum values check box.
4 Click the Zoom Extents button in the Graphics toolbar.

Failure Prediction in a Layered Shell

Introduction

Laminated shells made of carbon fiber reinforced plastic (CRFP) are common in a large variety of applications due to their high strength to weight ratio. Evaluation of the structural integrity of a laminated shell for a set of applied loads is necessary to make the design of such structures reliable.

This example shows how to model laminated shells using an ordinary Linear Elastic Material model in the Shell interfaces available with the Structural Mechanics Module. The same example can be modeled using a Layered Linear Elastic Material model in the Shell interface. The model using the latter approach can be found in the Verification Examples folder of the Composite Materials Application Library.

The structural integrity of a stack of shells with different fiber orientations is assessed through the parameters called Failure Index and Safety Factor, using different polynomial failure criteria. Because of the orientation, each ply will have different strength in the longitudinal and transversal direction, and hence different response to the loading. The analysis using a polynomial failure criterion is termed first ply failure analysis, where failure in any ply is considered as failure of the whole laminate. In this example, seven different polynomial criteria are compared.

The original model is a NAFEMS benchmark model, described in Benchmarks for Membrane and Bending Analysis of Laminated Shells, Part 2: Strength Analysis (Ref. 1). The COMSOL Multiphysics solutions are compared with the reference data.

Model Definition

The physical geometry of the problem consists of four square shells stacked above each other. The side length is 1 cm and each layer has thickness of 0.05 mm . The laminate (90/
$-45 / 45 / 0)$ is subjected to an in-plane axial tensile load. The actual geometry of the laminate is shown in Figure 1.

Figure 1: Geometry of layered shell with ply orientations 90/-45/45/0 from top to bottom.

MATERIAL PROPERTIES

The orthotropic material properties (Young's modulus, shear modulus, and Poisson's ratio) are given in Table 1:

TABLE I: MATERIAL PROPERTIES.

Material property	Value
$\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}\right\}$	$\{207,7.6,7.6\}(\mathrm{GPa})$
$\left\{\mathrm{G}_{12}, \mathrm{G}_{23}, \mathrm{G}_{13}\right\}$	$\{5,5,5\}(\mathrm{GPa})$
$\left\{v_{12}, v_{23}, v_{13}\right\}$	$\{0.3,0,0\}$

The tensile, compressive, and shear strengths are given in Table 2.
TABLE 2: MATERIAL STRENGTHS IN MPA.

Material strengths	Value
$\left\{\sigma_{\mathrm{t} 1}, \sigma_{\mathrm{t} 2}, \sigma_{\mathrm{t} 3}\right\}$	$\{500,5,5\}(\mathrm{MPa})$
$\left\{\sigma_{\mathrm{cl}}, \sigma_{\mathrm{c} 2}, \sigma_{\mathrm{c} 3}\right\}$	$\{350,75,75\}(\mathrm{MPa})$
$\left\{\sigma_{\mathrm{ss} 23}, \sigma_{\mathrm{ss} 13}, \sigma_{\mathrm{ss} 12}\right\}$	$\{35,35,35\}(\mathrm{MPa})$

All material properties and strengths are given in the local material directions, where the first axis is aligned with the fiber orientation.

BOUNDARY CONDITIONS

The applied boundary conditions and loads on each node are given in the table below.
TABLE 3: NODE LOCATIONS AND BOUNDARY CONDITIONS.

Node	\mathbf{X} (\mathbf{m})	\mathbf{Y} $\mathbf{(m)}$	\mathbf{Z} (\mathbf{m})	Constrained $\mathbf{D O F}$	Fx $\mathbf{(N)}$	Fy $\mathbf{(N)}$
$1(1)$	0	0	0	$\mathrm{u}, \mathrm{v}, \mathrm{w}, \theta_{x}$, θ_{y}, θ_{z}	Fz $\mathbf{(N)}$	
$2(3)$	0.01	0	0	θ_{z}	0	0
$3(4)$	0.01	0.01	0	θ_{z}	7.5	0
$4(2)$	0	0.01	0	u, θ_{z}	7.5	0

The numbers within parenthesis are point numbers in COMSOL Multiphysics geometry. The boundary conditions provided in the benchmark specifications apply to the layered shell as a single entity. The rotation around the z-axis, θ_{z}, is automatically constrained so it does not need to be considered.

FAILURE CRITERIA

Seven different failure criteria are used to predict the failure in the layered shell. These are Tsai-Wu Anisotropic, Tsai-Wu Orthotropic, Tsai-Hill, Hoffman, Modified Tsai-Hill, Azzi-Tsai-Hill, and Norris criteria.

Tsai-Wu Anisotropic

For the Tsai-Wu Anisotropic criterion, the material strength parameters are taken from Table 2 in order to obtain the same results as with the Tsai-Wu Orthotropic criterion. This exercise is done in order to verify the correctness of the implementation. The nonzero elements in the second rank tensor f are given below. Here, and in the following equations, repeated indices do not imply summation.

$$
\begin{equation*}
f_{i i}=\frac{1}{\sigma_{t i}}-\frac{1}{\sigma_{c i}} ; \quad i=1,2,3 \tag{1}
\end{equation*}
$$

The nonzero elements in the fourth rank tensor F are

$$
\begin{align*}
& F_{i i}=\frac{1}{\sigma_{t i} \sigma_{c i}} ; \quad i=1,2,3 \\
& F_{44}=\frac{1}{\sigma_{s s 23}^{2}}, \quad F_{55}=\frac{1}{\sigma_{s s 13}^{2}}, \quad F_{66}=\frac{1}{\sigma_{s s 12}^{2}} \tag{2}\\
& F_{i j}=-\frac{1}{2}\left(\sqrt{F_{i i} F_{j j}}\right) ; \quad i=1,2,3
\end{align*}
$$

Modified Tsai-Hill Orthotropic

The Hill criterion in Ref. 1 is called the Modified Tsai-Hill Orthotropic criterion in COMSOL Multiphysics.

Ref. 1 does not give results for either the Tsai-Wu Anisotropic, Tsai-Hill, Azzi-Tsai-Hill, nor Norris criteria; so the analytical results for failure index and safety factor are here derived from the stress values given in Ref. 1.

The stresses from Ref. 1 are given in Table 4. Apart from σ_{11}, σ_{22}, and σ_{12}, all other stress components are either zero or negligible.

TABLE 4: STRESSES IN DIFFERENT PLIES.

Stresses	Ply I	Ply 2	Ply 3	Ply 4
$\sigma_{11}(\mathrm{MPa})$	-5.128	12.59	8.520	9.357
$\sigma_{22}(\mathrm{MPa})$	4.407	1.983	0.125	-1.859
$\sigma_{12}(\mathrm{MPa})$	-1.663	2.572	-2.05 I	-0.5557

For all the selected polynomial criteria, the failure index (FI) is written as

$$
\begin{equation*}
\mathrm{FI}=\sigma_{i} F_{i j} \sigma_{j}+\sigma_{i} f_{i} \tag{3}
\end{equation*}
$$

where σ_{i} is the 6 -by-l stress vector (sorted using Voigt notation), $F_{i j}$ is a 6-by-6 symmetric matrix (fourth rank tensor) that contains the coefficients for the quadratic terms, and f_{i} is a 6-by-l vector (second rank tensor) that contains the linear terms. A failure index equal to or greater than 1.0 indicates failure in the material. In order to find the safety factor SF , the applied stress in Equation 3 is multiplied by the safety factor SF , and the failure index FI is set equal to 1.0 , which results in a quadratic equation of the form

$$
\begin{equation*}
a \mathrm{SF}^{2}+b \mathrm{SF}=1 \tag{4}
\end{equation*}
$$

where $a=\sigma_{i} F_{i j} \sigma_{j}$ and $b=\sigma_{i} f_{i}$.
The lowest positive root in Equation 4 is selected as the safety factor. Based on the stress values given in Table 4, the failure index and safety factor are computed for the criteria for which results in Ref. 1 are missing.

Tsai-Wu Anisotropic

For the Tsai-Wu Anisotropic criterion, the nonzero elements of the vector f_{i} and the matrix $F_{i j}$ are given by Equation 1 and Equation 2. By taking values of stresses from

Table 4, the failure index and safety factor are computed from Equation 3 and Equation 4, and given in Table 5 below.
table 5: ANALYTIC VALUES OF FAILURE INDEX AND SAFETY FACTOR FOR TSAI-WU ANISOTROPIC CRITERION.

Index	Ply I	Ply 2	Ply 3	Ply 4
FI	0.8840	0.3730	0.0199	-0.34309
SF	1.122	2.536	14.30	31.88

Tsai-Hill Orthotropic
For the Tsai-Hill Orthotropic criterion, all elements of the vector f_{i} are zero, while the nonzero elements of the matrix $F_{i j}$ are given by the Equation 5 .

$$
\begin{align*}
& F_{i i}=\frac{1}{\sigma_{t i}^{2}} ; \quad i=1,2,3 \tag{5}\\
& F_{44}=\frac{1}{\sigma_{s s 23}^{2}}, \quad F_{55}=\frac{1}{\sigma_{s s 13}^{2}}, \quad F_{66}=\frac{1}{\sigma_{s s 12}^{2}} \\
& F_{i j}=-\frac{1}{2}\left(F_{i i}+F_{j j}-F_{k k}\right) ; \quad i \neq j \neq k, i=1,2,3
\end{align*}
$$

By taking values of stresses from Table 4, the failure index and safety factor are computed from Equation 3, Equation 4, and Equation 5, and given in Table 6 below.

TABLE 6: ANALYTIC VALUES OF FAILURE INDEX AND SAFETY FACTOR FOR TSAI-HILL CRITERION.

Index	Ply I	Ply 2	Ply 3	Ply 4
FI	0.7795	0.16323	0.0043	0.1390
SF	1.132	2.474	15.15	2.682

Azzi-Tsai-Hill

For the Azzi-Tsai-Hill criterion, all elements of the vector f_{i} are zero, while the nonzero elements of the matrix $F_{i j}$ are given by Equation 6 .

$$
\begin{align*}
& \left\{\begin{array}{l}
\sigma_{i} \geq 0:\left(F_{i i}=\frac{1}{\sigma_{t i}^{2}}\right) \\
\sigma_{i}<0:\left(F_{i i}=\frac{1}{\sigma_{c i}^{2}}\right)
\end{array}\right. \\
& F_{66}=\frac{1}{\sigma_{s s 12}^{2}} \tag{6}\\
& \int \sigma_{1} \geq 0:\left(F_{12}=-\frac{1}{2 \sigma_{t 1}^{2}}\right) \\
& \sigma_{1}<0: \quad\left(F_{12}=-\frac{1}{2 \sigma_{c 1}^{2}}\right)
\end{align*}
$$

By taking values of the stresses from Table 4, the failure index and safety factor are computed from Equation 3, Equation 4, and Equation 6, and given in Table 7 below.

TABLE 7: ANALYTIC VALUES OF FAILURE INDEX AND SAFETY FACTOR FOR AZZI-TSAI-HILL CRITERION.

Index	Ply I	Ply 2	Ply 3	Ply 4
FI	0.7796	0.1632	0.00435	0.00128
SF	1.132	2.474	15.15	27.87

Norris

For the Norris criterion, all elements of the vector f_{i} are zero, while the nonzero elements of the matrix $F_{i j}$ are given by Equation 7 .

$$
\begin{align*}
& \begin{cases}\sigma_{i} \geq 0: & \left(F_{i i}=\frac{1}{\sigma_{t i}^{2}}\right) \\
\sigma_{i}<0: & \left(F_{i i}=\frac{1}{\sigma_{c i}^{2}}\right)\end{cases} \tag{7}\\
& F_{66}=\frac{1}{\sigma_{s s 12}^{2}} \\
& F_{12}=-\frac{1}{2}\left(\sqrt{F_{11} F_{22}}\right)
\end{align*}
$$

By taking values of the stresses from Table 4, the failure index and safety factor are computed from Equation 3, Equation 4, and Equation 7, and given in Table 8 below.
table 8: ANALYTIC VALUES OF FAILURE INDEX AND SAFETY FACTOR FOR NORRIS CRITERION.

Index	Ply I	Ply 2	Ply 3	Ply 4
FI	0.7923	0.1533	0.0039	0.00168
SF	1.126	2.553	15.95	24.38

Note that for the current model, failure index and safety factor are computed at the midplane of each shell interface. However, COMSOL Multiphysics actually computes failure index, safety factor, damage index, and margin of safety at bottom, middle, and top surfaces of the shell, as well as the most critical of the three values.

Results and Discussion

The computed stresses are shown in Table 4, while Table 5 through Table 8 show the analytical values for failure index and safety factor (reserve factor) for certain failure criteria. For the Tsai-Wu Orthotropic, Modified Tsai-Hill, and Hoffman criteria, the failure index and safety factor are taken from Ref. 1. The results are compared with results from COMSOL Multiphysics.

TABLE 9: COMPARISON OF STRESSES FOR A LAYERED SHELL.

Ply	σ_{11} from benchmark	σ_{11} from COMSOL	σ_{22} from benchmark	σ_{22} from COMSOL	σ_{12} from benchmark	σ_{12} from COMSOL
Ply I	-5.128 E 6	-5.128 E 6	4.407 E 6	4.407 E 6	-1.663 E 6	-1.663 E 6
Ply 2	1.259 E 7	1.259 E 7	I.983E6	1.983 E 6	2.572 E 6	$2.57 \mathrm{IE6}$
Ply 3	8.520 E 6	8.520 E 6	1.256 E 5	1.256 E 5	$-2.05 \mathrm{IE6}$	-2.05 IE6
Ply 4	9.357 E 6	9.357 E 6	-1.859 E 6	-1.859 E 6	-5.557 E 5	-5.557 E 5

TABLE 10: COMPARISON OF FAILURE INDEX (FI) AND SAFETY FACTORS (SF) FOR PLY I (90 DEGREE PLY).

Criterion	FI from benchmark or analytical computations	FI from COMSOL	SF from benchmark or analytical computations	SF from COMSOL
Tsai-Wu Orthotropic	0.8840	0.884 I	I .122	I.I223
Tsai-Hill	0.7795	0.7794	I .132	I .1327
Hoffman	0.88 II	0.88 I 4	I .1253	I .1258
Modified Tsai-Hill	0.7795	0.7794	I .1325	I .1327

TABLE 10: COMPARISON OF FAILURE INDEX (FI) AND SAFETY FACTORS (SF) FOR PLY I (90 DEGREE PLY).
\(\left.$$
\begin{array}{l|l|l|l|l}\hline \text { Criterion } & \begin{array}{l}\text { FI from } \\
\text { benchmark or } \\
\text { analytical } \\
\text { computations }\end{array} & \begin{array}{l}\text { FI from } \\
\text { COMSOL }\end{array} & \begin{array}{l}\text { SF from } \\
\text { benchmark or } \\
\text { analytical } \\
\text { computations }\end{array}
$$ \& SF from

COMSOL\end{array}\right]\)| Com |
| :--- |

TABLE II: COMPARISON OF FAILURE INDEX (FI) AND SAFETY FACTORS (SF) FOR PLY 2 (-45 DEGREE PLY).

Criterion	FI from benchmark or analytical computations	FI from COMSOL	SF from benchmark or analytical computations	SF from COMSOL
Tsai-Wu Orthotropic	0.3730	0.373 I	2.5367	2.5367
Tsai-Hill	0.1632	0.1632	2.474	2.4748
Hoffman	0.3763	0.3760	2.4944	2.494 I
Modified Tsai-Hill	0.1632	0.1632	2.4748	2.4748
Azzi-Tsai-Hill	0.1632	0.1632	2.474	2.4748
Norris	0.1533	0.1533	2.553	2.5534
Tsai-Wu Anisotropic	0.37308	0.3731	2.536	2.5367

TABLE 12: COMPARISON OF FAILURE INDEX (FI) AND SAFETY FACTORS (SF) FOR PLY 3 (45 DEGREE PLY).

Criterion	FI from benchmark or analytical computations	FI from COMSOL	SF from benchmark or analytical computations	SF from COMSOL
Tsai-Wu Orthotropic	0.0199	0.0199	14.302	14.302
Tsai-Hill	0.0043	0.0043	15.15	15.157
Hoffman	0.0200	0.0200	14.098	14.098
Modified Tsai-Hill	0.0043	0.0043	15.157	15.157
Azzi-Tsai-Hill	0.0043	0.0043	15.15	15.157
Norris	0.0039	0.0039	15.95	15.954
Tsai-Wu Anisotropic	0.0199	0.0199	14.30	14.302

TABLE I3: COMPARISON OF FAILURE INDEX (FI) AND SAFETY FACTORS (SF) FOR PLY 4 (0 DEGREE PLY).

Criterion	FI from benchmark or analytical computations	FI from COMSOL	SF from benchmark or analytical computations	SF from COMSOL
Tsai-Wu Orthotropic	-0.3430	-0.3430	31.885	31.884
Tsai-Hill	0.1390	0.1390	2.68	2.682
Hoffman	-0.3451	-0.3450	37.876	37.876
Modified Tsai-Hill	0.00140	0.00135	27.12	27.124
Azzi-Tsai-Hill	0.00128	0.00126	27.87	27.877
Norris	0.00168	0.00168	24.38	24.388
Tsai-Wu Anisotropic	-0.3430	-0.3430	31.88	31.884

For many industrial and real life applications, the safety factor (SF) is more useful than the failure index (FI). The safety factor (or reserve factor) gives a direct indication of how close the component is to failure. Figure 2 shows the Hoffman safety factor (SF) at the midplane for the different plies. Ply 1 (90 -degree ply) is close to failure as expected because of its orientation, where fibers are perpendicular to the loading direction.

Figure 2: Hoffman safety factors at midplanes for a stack of shells.

The von Mises stresses in all plies are shown in Figure 3. The stress in ply 1 is the lowest, but this layer is still more susceptible to failure due to the orientation of its fibers.

Figure 3: von Mises stress in a stack of shells.

Notes About the COMSOL Implementation

This layered shell is modeled using four separate Shell interfaces on top of each other. All four interfaces are located on the same boundary, and share the translational and rotational degrees of freedom. Is is only the different values of the offset properties which describes the stacking.

The boundary conditions provided in the benchmark specifications apply to the layered shell as a single entity. When implemented in this model, special attention must be paid to the boundary condition stating that in one point, only the x-translation should be constrained. In the shell sense, this is a condition on the midsurface of the stack, which is between ply 2 and ply 3 . Setting the degree of freedom u to zero, would in this case imply that also the rotation around the y-axis is constrained, since it would be applied on all layers. The intended boundary condition is instead implemented by stating that the x displacement in ply 3 should be the negative of the x-displacement in ply 2 .

Reference

1. P. Hopkins, Benchmarks for Membrane and Bending Analysis of Laminated Shells, Part 2: Strength Analysis, NAFEMS, 2005.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/failure_prediction_in_a_layered_shell

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD
I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Shell (shell).
3 Click Add.
4 In the Select Physics tree, select Structural Mechanics>Shell (shell).
5 Click Add.
6 In the Select Physics tree, select Structural Mechanics>Shell (shell).
7 Click Add.
8 In the Select Physics tree, select Structural Mechanics>Shell (shell).
9 Click Add.
10 Click Study.
II In the Select Study tree, select General Studies>Stationary.
12 Click Done.

GLOBAL DEFINITIONS

Parameters I

Load the text file containing the material properties and material strengths.
I In the Model Builder window, under Global Definitions click Parameters I.

2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file failure_prediction_in_a_layered_shell_materialproperties.txt.

DEFINITIONS

Set up three rotated coordinate systems.

Rotated System 2 (sys2)

I In the Definitions toolbar, click Coordinate Systems and choose Rotated System.
2 In the Settings window for Rotated System, locate the Rotation section.
3 Find the Euler angles (Z-X-Z) subsection. In the α text field, type pi/2.
Rotated System 3 (sys3)
I Right-click Rotated System 2 (sys2) and choose Duplicate.
2 In the Settings window for Rotated System, locate the Rotation section.
3 Find the Euler angles (Z-X-Z) subsection. In the α text field, type -pi/4.
Rotated System 4 (sys4)
I Right-click Rotated System 3 (sys3) and choose Duplicate.
2 In the Settings window for Rotated System, locate the Rotation section.
3 Find the Euler angles (Z-X-Z) subsection. In the α text field, type pi/4.

GEOMETRY I
Work Plane I (wpl)
In the Geometry toolbar, click Work Plane.
Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane I (wpl)>Square I (sql)
I In the Work Plane toolbar, click Square.
2 In the Settings window for Square, locate the Size section.
3 In the Side length text field, type 1e-2.
4 Click Build Selected.
5 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)
In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

SHELL (SHELL)

Activate Advanced Physics option from Show button.
I Click the Show More Options button in the Model Builder toolbar.
2 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.

3 Click OK.

The layered shell is modeled using four separate shell interfaces located on the same boundary (mesh surface), sharing the degrees of freedom. The stacking of the shells is done using a Physical Offset option. With this option the constraints and loads are transferred to the actual midplane of the shells without modeling it.
As the same degrees of freedom are to be shared by all shell interfaces, set the displacement field to \mathbf{u} and the displacement of the shell normals to ar for Shell 2, Shell 3 , and Shell 4.

Set the discretization for the displacement field to Linear in order to resemble the benchmark example.
The results given in the benchmark example are at the midplane of each shell layer. Set the Default Through-Thickness Result Location to zero for all shells.

4 In the Settings window for Shell, type Ply 1 in the Label text field.
5 In the Name text field, type shell1.
6 Click to expand the Default Through-Thickness Result Location section. In the z text field, type 0.

7 Click to expand the Discretization section. From the Displacement field list, choose Linear.

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Ply I (shellI) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type th.
4 From the Offset definition list, choose Physical offset.

5 In the $z_{\text {offset }}$ text field, type 1.5*th.

Linear Elastic Material I

Choose the orthotropic solid model for the linear elastic material and assign Rotated System 2 as Shell Local System.

I In the Model Builder window, click Linear Elastic Material I.
2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.

3 From the Solid model list, choose Orthotropic.
Shell Local System I
I In the Model Builder window, expand the Linear Elastic Material I node, then click Shell Local System I.

2 In the Settings window for Shell Local System, locate the Coordinate System Selection section.

3 From the Coordinate system list, choose Rotated System 2 (sys2).

SHELL 2 (SHELL2)

I In the Model Builder window, under Component I (compl) click Shell 2 (shell2).
2 In the Settings window for Shell, type Ply 2 in the Label text field.
3 Locate the Discretization section. From the Displacement field list, choose Linear.
4 Locate the Default Through-Thickness Result Location section. In the z text field, type 0.
5 Click to expand the Dependent Variables section. In the Displacement field text field, type u.

6 In the Displacement of shell normals text field, type ar.

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Ply 2 (shell2) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type th.
4 From the Offset definition list, choose Physical offset.
5 In the $z_{\text {offset }}$ text field, type 0.5^{*} th.
Linear Elastic Material I
Choose the orthotropic solid model for the linear elastic material and assign Rotated System 3 as Shell Local System.

I In the Model Builder window, click Linear Elastic Material I.
2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.

3 From the Solid model list, choose Orthotropic.
Shell Local System I
I In the Model Builder window, expand the Linear Elastic Material I node, then click Shell Local System I.

2 In the Settings window for Shell Local System, locate the Coordinate System Selection section.

3 From the Coordinate system list, choose Rotated System 3 (sys3).

SHELL 3 (SHELL3)
I In the Model Builder window, under Component I (compI) click Shell $\mathbf{3}$ (shell3).
2 In the Settings window for Shell, type Ply 3 in the Label text field.
3 Locate the Discretization section. From the Displacement field list, choose Linear.
4 Locate the Default Through-Thickness Result Location section. In the z text field, type 0 .
5 Locate the Dependent Variables section. In the Displacement field text field, type u.
6 In the Displacement of shell normals text field, type ar.
Thickness and Offset I
I In the Model Builder window, under Component I (compl)>Ply 3 (shell3) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type th.
4 From the Offset definition list, choose Physical offset.
5 In the $z_{\text {offset }}$ text field, type -0.5^{*} th.

Linear Elastic Material I

Choose the orthotropic solid model for the linear elastic material and assign Rotated System 4 as Shell Local System.

I In the Model Builder window, click Linear Elastic Material I.
2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.

3 From the Solid model list, choose Orthotropic.

Shell Local System I

I In the Model Builder window, expand the Linear Elastic Material I node, then click Shell Local System I.

2 In the Settings window for Shell Local System, locate the Coordinate System Selection section.

3 From the Coordinate system list, choose Rotated System 4 (sys4).

SHELL 4 (SHELL4)

I In the Model Builder window, under Component I (compl) click Shell 4 (shell4).
2 In the Settings window for Shell, type Ply 4 in the Label text field.
3 Locate the Discretization section. From the Displacement field list, choose Linear.
4 Locate the Default Through-Thickness Result Location section. In the z text field, type 0.
5 Locate the Dependent Variables section. In the Displacement field text field, type u.
6 In the Displacement of shell normals text field, type ar.

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Ply 4 (shell4) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type th.
4 From the Offset definition list, choose Physical offset.
5 In the $z_{\text {offset }}$ text field, type $-1.5^{*} t h$.

Linear Elastic Material I

I In the Model Builder window, click Linear Elastic Material I.
2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.

3 From the Solid model list, choose Orthotropic.

MATERIALS

Material I (matl)
Select the material properties for the orthotropic material from Table 1.
I In the Model Builder window, under Component I (compl)>Materials click Material I (matl).
2 In the Settings window for Material, locate the Material Contents section.

3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	\{Evectorl, Evector2, Evector3\}	\{E1, E2, E3\}	Pa	Orthotropic
Poisson's ratio	\{nuvectorl, nuvector2, nuvector3\}	\{nu12, nu23, nu13\}	I	Orthotropic
Shear modulus	\{Gvectorl, Gvector2, Gvector3\}	$\{\mathrm{G}, \mathrm{G}, \mathrm{G} \mathrm{\}}$	$\mathrm{N} / \mathrm{m}^{2}$	Orthotropic
Density	rho	7800	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

PLY I (SHELLI)
Linear Elastic Material I
In the Model Builder window, under Component I (compl)>Ply I (shellI) click
Linear Elastic Material I.
Safety I
I In the Physics toolbar, click Attributes and choose Safety.
2 In the Settings window for Safety, type Safety: Tsai-Wu Orthotropic Criterion in the Label text field.

3 Locate the Failure Model section. From the Failure criterion list, choose TsaiWu Orthotropic.

Safety 2, 3, 4, 5, 6, 7

I Create six similar Safety nodes by duplicating the Safety I node, and replace the failure criterion as given in the table below:

Name	Failure Criterion
Safety 2	Tsai-Hill Orthotropic
Safety 3	Hoffman Orthotropic
Safety 4	Modified Tsai-Hill Orthotropic
Safety 5	Azzi-Tsai-Hill Orthotropic
Safety 6	Norris Orthotropic
Safety 7	Tsai-Wu Anisotropic

Select all Safety nodes under Play I (shelII)>> Linear Elastic Material I, and right click to Copy. Then, go to Linear Elastic Material I under Play 2 (shell2), Play 3 (shell3), and Ply 4 (shell4) and right click to Paste Mutiple Items.

MATERIALS

Material I (matl)

Enter the material properties for the Tsai-Wu Anisotropic criterion as shown in Equation 1 and Equation 2.

I In the Model Builder window, under Component I (compl)>Materials click Material I (matl).

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Tensile strengths	\{sigmats I, sigmats2, sigmats3\}	\{Sigmats1, Sigmats2, Sigmats3\}	Pa	Orthotropic strength parameters, Voigt notation
Compressive strengths	\{sigmacs I, sigmacs2, sigmacs3\}	\{Sigmacs1, Sigmacs2, Sigmacs3\}	Pa	Orthotropic strength parameters, Voigt
Shear strengths	\{sigmass 1, sigmass2, sigmass3\}	\{Sigmass23, Sigmass13, Sigmass12\}	Pa	Orthotropic strength
parameters, Voigt				
notation				

Property	Variable	Value	Unit	Property group
Second rank tensor, Voigt notation	$\begin{aligned} & \left\{F_{-} s 1, F_{-} s 2,\right. \\ & F_{-} s 3, F_{-} 44, \\ & \left.F_{-} s 5, F_{-} s 6\right\} \end{aligned}$	\{1/Sigmats1-1/ Sigmacs1,1/ Sigmats2-1/ Sigmacs2,1/ Sigmats3-1/ Sigmacs3,0,0, 0\}	I/Pa	Anisotropic strength parameters, Voigt notation
Fourth rank tensor, Voigt notation	\{F_fll, F_fl2, F_f $22, \mathrm{~F}_{\mathrm{f}} \mathrm{fl} 3$, F_f23, F_f 33 , F_fl4, F_f24, F_f34, F_f44, F_fl5, F_f25, F_f35, F_f45, F_f55, F_fl6, F_f26, F_f36, F_f46, F_f56, F_f66\}; F_fij $=F_{f} f \mathrm{fi}$	\{1/(Sigmats1* Sigmacs1), - 0.5*sqrt(1/ ((Sigmats1* Sigmacs1)* (Sigmats2* Sigmacs2))),1/ (Sigmats2* Sigmacs2), - 0.5*sqrt(1/ ((Sigmats1* Sigmacs1)* (Sigmats3* Sigmacs3))), - 0.5*sqrt(1/ ((Sigmats2* Sigmacs2)* (Sigmats3* Sigmacs3))),1/ (Sigmats3* Sigmacs3), 0,0, 0,1/ Sigmass23^2,0, 0,0,0,1/ Sigmass13^2,0, 0,0,0,0,1/ Sigmass12^2\}	$\begin{aligned} & \mathrm{m}^{2} \cdot \mathrm{~s}^{\wedge 4 /} \\ & \mathrm{kg}^{2} \end{aligned}$	Anisotropic strength parameters, Voigt notation
Density	rho	7800	$\mathrm{kg} / \mathrm{m}^{3}$	Basic
Young's modulus	\{Evectorl, Evector2, Evector3\}	$\begin{aligned} & \{207 \mathrm{e} 9,7.6 \mathrm{e} 9, \\ & 7.6 \mathrm{e} 9\} \end{aligned}$	Pa	Orthotropic
Poisson's ratio	\{nuvectorl, nuvector2, nuvector3\}	\{0.3, 0, 0\}	I	Orthotropic
Shear modulus	\{Gvectorl, Gvector2, Gvector3\}	\{5e9,5e9,5e9\}	$\mathrm{N} / \mathrm{m}^{2}$	Orthotropic

Property	Variable	Value	Unit	Property group
Loss factor for orthotropic Young's modulus	\{eta_Evector I, eta_Evector2, eta_Evector3 \}	$\{0,0,0\}$	1	Orthotropic
Loss factor for orthotropic shear modulus	```{eta_Gvector I, eta_Gvector2 eta_Gvector3 }```	$\{0,0,0\}$	I	Orthotropic

PLY I (SHELLI)

Fixed Constraint I

I In the Physics toolbar, click Points and choose Fixed Constraint.
2 Select Point 1 only.
Apply a nodal tensile load of 15 N as an edge load. The load is shared by all shell midplanes, hence it is divided by 4 in order to keep a total value of 15 N .

Edge Load I

I In the Physics toolbar, click Edges and choose Edge Load.
2 Select Edge 4 only.
3 In the Settings window for Edge Load, locate the Force section.
4 From the Load type list, choose Total force.
5 Specify the $\mathbf{F}_{\text {tot }}$ vector as

Ftotal/4	x
0	y
0	z

Now select Fixed Constraint and Edge Load nodes under Ply I (shellI), and right click to Copy. Then go to Ply 2 (shell2), Ply 3 (shell3), and Ply 4 (shell4); and right click to Paste Mutiple Items.

PLY 2 (SHELL2)

To enforce a fixed x-direction translation on Node 2, apply the displacement $u 0$ in the x direction to Point 2 of shell2, and the displacement -u0 in the x direction to the same
point of shell3. Also add a Global Equation node under shell3 for the additional degree of freedom u0.

I In the Model Builder window, under Component I (compl) click Ply 2 (shell2).

Prescribed Displacement/Rotation I

I In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.
2 Select Point 2 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 In the $u_{0 x}$ text field, type $u 0$.

PLY 3 (SHELL3)

I In the Model Builder window, under Component I (compl) click Ply 3 (shell3).
2 In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.

Prescribed Displacement/Rotation I

I Select Point 2 only.
2 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

3 Select the Prescribed in \mathbf{x} direction check box.
4 In the $u_{0 x}$ text field, type - u0.
5 Click the Show More Options button in the Model Builder toolbar.
6 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Equation-Based Contributions.
7 Click OK.

Global Equations I

I In the Physics toolbar, click Global and choose Global Equations.
2 In the Settings window for Global Equations, locate the Global Equations section.
3 In the table, enter the following settings:

Name	f(u,ut,utt, t) (I)	Initial value $(\mathbf{u} \mathbf{0})(1)$	Initial value $\left(\mathbf{u} _\mathbf{t 0}\right)(1 / s)$	Description
u 0		0	0	

4 Locate the Units section. Click Select Dependent Variable Quantity.

5 In the Physical Quantity dialog box, type displacement in the text field.
6 Click Filter.
7 In the tree, select General>Displacement (m).
8 Click OK.

MESH I

Use a single quadrilateral element.

Free Quad I

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose More Operations>Free Quad.
2 Select Boundary 1 only.
Distribution I
I Right-click Free Quad I and choose Distribution.
2 In the Settings window for Distribution, locate the Edge Selection section.
3 From the Selection list, choose All edges.
4 Locate the Distribution section. In the Number of elements text field, type 1.
5 Click Build AII.

STUDY I

Switch off the generation of default plots, since each Shell interface will generate three plots by default.

I In the Model Builder window, click Study I.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.
4 In the Home toolbar, click Compute.

RESULTS

In the Model Builder window, expand the Results node.

Cut Point 3D I

I In the Results toolbar, click Cut Point 3D.
2 In the Settings window for Cut Point 3D, locate the Point Data section.
3 In the \mathbf{X} text field, type $0.5 \mathrm{e}-2$.
4 In the \mathbf{Y} text field, type 0.5e-2.

5 In the \mathbf{Z} text field, type 0 .

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Failure indices in Ply 1 in the Label text field.

3 Locate the Data section. From the Dataset list, choose Cut Point 3D I.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
shell1.emm1.sf1.f_im	1	
shell1.emm1.sf2.f_im	1	
shell1.emm1.sf3.f_im	1	
shell1.emm1.sf4.f_im	1	
shell1.emm1.sf5.f_im	1	
shell1.emm1.sf6.f_im	1	
shell1.emm1.sf7.f_im	1	

5 Click Evaluate.

Table I

I In the Model Builder window, expand the Results>Tables node, then click Table I.
2 In the Settings window for Table, type Failure indices in Ply 1 in the Label text field.

Point Evaluation 2, 3, 4
Create three similar Point Evaluation nodes by duplicating the Point Evaluation I node, and replace the word shell1 in the Expressions by shell2, shell3, and shell4 for Point Evaluation 2, Point Evaluation 3, and Point Evaluation 4, respectively. Rename point evaluation nodes and tables appropriately.

Point Evaluation 5

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Safety factors in Ply 1 in the Label text field.

3 Locate the Data section. From the Dataset list, choose Cut Point 3D I.

4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
shell1.emm1.sf1.s_fm	1	
shell1.emm1.sf2.s_fm	1	
shell1.emm1.sf3.s_fm	1	
shell1.emm1.sf4.s_fm	1	
shell1.emm1.sf5.s_fm	1	
shell1.emm1.sf6.s_fm	1	
shell1.emm1.sf7.s_fm	1	

5 Click Evaluate.

Table 5

I In the Model Builder window, under Results>Tables click Table 5.
2 In the Settings window for Table, type Safety factors in Ply 1 in the Label text field.
Point Evaluation 6, 7, 8
Create three similar Point Evaluation nodes by duplicating the Point Evaluation 5 node and replace the word shelll in the Expressions by shell2, shell3, and shell4 for Point Evaluation 6, Point Evaluation 7, and Point Evaluation 8, respectively. Rename them appropriately.

Point Evaluation 9

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Stresses in Ply 1 in the Label text field.

3 Locate the Data section. From the Dataset list, choose Cut Point 3D I.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
shell1.Sl11	$\mathrm{N} / \mathrm{m}^{\wedge} 2$	
shell1.Sl22	$\mathrm{N} / \mathrm{m}^{\wedge} 2$	
shell1.Sl12	$\mathrm{N} / \mathrm{m}^{\wedge} 2$	

5 Click Evaluate.

Table 9

I In the Model Builder window, under Results>Tables click Table 9.
2 In the Settings window for Table, type Stresses in Ply 1 in the Label text field.

Point Evaluation IO, II, I 2

Create three similar Point Evaluation nodes by duplicating the Point Evaluation 9 node, and replace the word shelll in the Expressions by shell2, shell3, and shell4 for Point Evaluation 10, Point Evaluation II, and Point Evaluation I2, respectively. Rename them appropriately.

To visualize von Mises stress in the layered shell, use four different Surface plots for four shells in the 3D Plot Group. Modify the Z component in the Deformation node for each surface in order to visualize it better.

3D Plot Group I

I In the Results toolbar, click 3D Plot Group.
2 In the Settings window for 3D Plot Group, type von-Mises Stress in Stack of Shells in the Label text field.

3 Click to expand the Title section. From the Title type list, choose Manual.
4 In the Title text area, type von-Mises Stress (MPa).

Surface I

I Right-click von-Mises Stress in Stack of Shells and choose Surface.
2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type round(shell1.mises).
4 From the Unit list, choose MPa.
Deformation I
I Right-click Surface I and choose Deformation.
2 In the Settings window for Deformation, locate the Expression section.
3 In the \mathbf{Z} component text field, type $w+1.5 e-3$.
4 Locate the Scale section. Select the Scale factor check box.
5 In the associated text field, type 1.

Surface 2, 3, 4

Create three similar Surface nodes by duplicating the Surface I node, and replace the word shelll in the Expression by shell2, shell3, and shell4 for Surface 2, Surface 3, and Surface 4, respectively. Replace the choice of color table in the subsequent Surface nodes, and also
replace the Z component field in the corresponding Deformation node with the following choices in the table:

Name	Choice of color table	Z component field expression
Surface 2	Cyclic	$\mathrm{w}+0.5 \mathrm{e}-3$
Surface 3	Disco	$\mathrm{w}-0.5 \mathrm{e}-3$
Surface 4	Thermal	$\mathrm{w}-1.5 \mathrm{e}-3$

von-Mises Stress in Stack of Shells

I In the Model Builder window, click von-Mises Stress in Stack of Shells.
2 In the Settings window for 3D Plot Group, locate the Color Legend section.
3 From the Position list, choose Right double.
4 Click the Zoom Extents button in the Graphics toolbar.
To visualize the Hoffman safety factors in the layered shell, use four different Surface plots for the four shells in the 3D Plot Group. Modify the Z component in the Deformation node for each surface in order to visualize it better.

3D Plot Group 2

I In the Results toolbar, click 3D Plot Group.
2 In the Settings window for 3D Plot Group, type Hoffman Safety Factors in Stack of Shells in the Label text field.

3 Locate the Title section. From the Title type list, choose Manual.
4 In the Title text area, type Hoffman Safety Factor (1).
Surface I
I Right-click Hoffman Safety Factors in Stack of Shells and choose Surface.
2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type shell1.emm1.sf3.s_fm.

Deformation I

I Right-click Surface I and choose Deformation.
2 In the Settings window for Deformation, locate the Expression section.
3 In the \mathbf{Z} component text field, type w+1.5e-3.
4 Locate the Scale section. Select the Scale factor check box.
5 In the associated text field, type 1.

Surface 2, 3, 4

Create three similar Surface nodes by duplicating the above node, and replace the word shelll in the Expression by shell2, shell3, and shell4 for Surface 2, Surface 3, and Surface 4, respectively. Replace the choice of color table in the subsequent Surface nodes, and also replace the Z component field in the corresponding Deformation node with the following choices in the table:

Name	Choice of color table	Z component field expression
Surface 2	Cyclic	$\mathrm{w}+0.5 \mathrm{e}-3$
Surface 3	Disco	$\mathrm{w}-0.5 \mathrm{e}-3$
Surface 4	Thermal	$\mathrm{w}-1.5 \mathrm{e}-3$

Hoffman Safety Factors in Stack of Shells
I In the Model Builder window, click Hoffman Safety Factors in Stack of Shells.
2 In the Settings window for 3D Plot Group, locate the Color Legend section.
3 From the Position list, choose Right double.

Eigenfrequency Analysis of a Free Cylinder

Introduction

In the following example you compute the eigenfrequencies of a free circular pipe using three different approaches:

- An axisymmetric model using the Solid Mechanics interface.
- An axisymmetric model using the Shell interface.
- A sector of a 3D model using cyclic symmetry in the Solid Mechanics interface.

The example is taken from NAFEMS Free Vibration Benchmarks (Ref. 1). The eigenfrequencies are compared with the values given in the benchmark report.

As an extension, you will also compute eigenfrequencies with twisting deformation.

Model Definition

The model is NAFEMS Test No 41, "Free Cylinder" described on page 41 in NAFEMS Free Vibration Benchmarks, vol. 3 (Ref. 1). The Benchmark tests the capability to handle rigid body modes and eigenfrequencies.

The cylinder is 10 m tall with an inner radius of 1.8 m and a thickness of 0.4 m .

Figure 1: Model geometry in the rz-plane.
In the axisymmetric solid model, the geometry consists of this rectangle.
In the axisymmetric shell interface, the mesh is placed on the line representing the inner boundary of the cylinder, and an offset property is used in order to account for the fact that the shell model should represent the midsurface.

In the 3D solid model, the rectangle is swept around the axis of revolution, so that a 15° sector is formed. As long as 360° is as an exact multiple of the sector angle, any angle could have been used.

MATERIAL

The material is isotropic linear elastic with $E=2.0 \cdot 10^{11} \mathrm{~Pa}, v=0.3$, and $\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}$.

LOADS

In an eigenfrequency analysis loads are not needed.

CONSTRAINTS

In the axisymmetric models, no constraints are applied because the cylinder is free. In the 3D solid model, cyclic symmetry constraints are applied to the cuts in the azimuthal direction.

Results

For structural mechanics, there are two possible interpretations of axisymmetry. The most common one is that there are no displacements out of the $R Z$-plane. Another interpretation, which also allows twisting motion, is that all derivatives of the displacements with respect to the azimuthal coordinate is zero. Such an extension is available when using the Solid Mechanics interface.

The original NAFEMS example does not contain out-of-plane displacements, in which case there is one rigid body mode. The rigid body mode with an eigenvalue close to zero is found in all physics interfaces. The corresponding shape is a pure axial rigid body translation without any radial displacement. The eigenfrequencies are in close agreement with the target values from the NAFEMS Free Vibration Benchmarks (Ref. l); see below.

EIGENFREQUENCY	SOLID MECHANICS, AXISYMMETRY	SHELL, AXISYMMETRY	SOLID MECHANICS, 3D	TARGET (Ref. l)
f_{2}	243.50	243.64	243.50	243.53
f_{3}	377.39	378.16	377.39	377.41
f_{4}	394.21	394.11	394.22	394.11
f_{5}	397.84	397.36	397.84	397.72
f_{6}	405.36	407.43	405.36	405.28

The analytical solution for twisting vibration of a free cylindrical pipe is

$$
\begin{equation*}
f_{n}=\frac{n}{2 L} \sqrt{\frac{G}{\rho}} \tag{1}
\end{equation*}
$$

Here, G is the shear modulus,

$$
\begin{equation*}
G=\frac{E}{2(1+v)} \tag{2}
\end{equation*}
$$

In this case, there is one more rigid body mode: pure rotation around the axis of revolution. The computed non-trivial eigenfrequencies have a very good agreement with the analytical solution:

EIGENFREQUENCY	SOLID MECHANICS, AXISYMMETRY	SOLID MECHANICS,	TARGET (ANALYTICAL)
f_{1}	155.04	155.04	155.04
f_{2}	310.09	310.09	310.09

Figure 2 shows the shape of the second eigenmode in the axisymmetric solid model. In Figure 3, the same plot is shown for the axisymmetric shell interface. In both cases, Revolution 2D data sets have been used for extending the axisymmetric model into 3D space..

Eigenfrequency $=243.5 \mathrm{~Hz}$

Surface: Total displacement (m)

Figure 2: The second non-rigid eigenmode, computed using an axisymmetric solid mechanics interface.

Figure 3: The first non-rigid eigenmode, computed using an axisymmetric shell interface. Due to the offset property, the shell is modeled at the true midsurface, even though the mesh is at the inner boundary of the cylinder.

In Figure 4 and Figure 5, two eigenmodes from the 3D solid model are shown. A Sector 3D data set has been used for expanding the results from the original 15° sector.

Figure 4: The second non-rigid eigenmode, computed using a 3D solid mechanics interface with cyclic symmetry boundary conditions.

Figure 5: The first non-rigid eigenmode, computed using a 3D solid mechanics interface with cyclic symmetry boundary conditions.

Notes About the COMSOL Implementation

In the 3D solid model, you could have used ordinary Symmetry boundary conditions instead of the Periodic Condition. The effect would have been that only the in-plane modes were computed.

In a real pipe, there are however also other eigenmodes, which are not axially symmetric. You can find such modes by using azimuthal mode numbers other than zero in the settings for the cyclic symmetry condition (3D) and Solid Mechanics interface settings (2 D axisymmetry). Such modes can be visualized by setting the azimuthal mode number to the corresponding value in the Advanced section in the settings for the Revolution 2D and Sector 3D data sets.

Reference

1. F. Abassian, D.J. Dawswell, and N.C. Knowles, Free Vibration Benchmarks, vol.3, NAFEMS, Glasgow, 1987.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/free_cylinder

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD
I In the Model Wizard window, click 2D Axisymmetric.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Eigenfrequency.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
height	$10[\mathrm{~m}]$	10 m	Height of cylinder
thic	$0.4[\mathrm{~m}]$	0.4 m	Thickness of cylinder
r_in	$1.8[\mathrm{~m}]$	1.8 m	Inner radius

GEOMETRY I

Rectangle I (rl)
I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.

3 In the Width text field, type thic.
4 In the Height text field, type height.
5 Locate the Position section. In the \mathbf{r} text field, type $r_{\text {_ }}$ in.

6 Click Build All Objects.

7 Click the Zoom Extents button in the Graphics toolbar.

GLOBAL DEFINITIONS

In this example, the same material data will be referenced from several physics interfaces, so it is convenient to define a global material.

Material I (matl)

I In the Model Builder window, under Global Definitions right-click Materials and choose Blank Material.

2 In the Settings window for Material, click to expand the Material Properties section.
3 In the Material properties tree, select Basic Properties>Density.
4 Click Add to Material.
5 In the Material properties tree, select Solid Mechanics>Linear Elastic Material> Young's Modulus and Poisson's Ratio.
6 Click Add to Material.

7 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Density	rho	8000	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic
Young's modulus	E	$2 e 11$	Pa	Young's modulus and Poisson's ratio
Poisson's ratio	nu	0.3	I	Young's modulus and Poisson's ratio

MATERIALS

Material Link I (matlnkI)

In the Model Builder window, under Component I (compl) right-click Materials and choose More>Material Link.

MESH I
Mapped I
In the Model Builder window, under Component I (compl) right-click Mesh I and choose Mapped.

Distribution I
I In the Model Builder window, right-click Mapped I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 20.
4 Select Boundary 1 only.
Distribution 2
I In the Model Builder window, right-click Mapped I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 2.
4 Select Boundary 2 only.
5 Click Build AII.

STUDY I

I In the Model Builder window, click Study I.
2 In the Settings window for Study, type Study 1, 2D axisymmetric solid in the Label text field.

3 In the Home toolbar, click Compute.

RESULTS

Mode Shape (solid)

Visualize an eigenmode in 3D.

Mode Shape, 3D (solid)

I In the Model Builder window, click Mode Shape, 3D (solid).
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Eigenfrequency $(\mathbf{H z})$ list, choose 243.5.
4 Click the Show Grid button in the Graphics toolbar.
5 In the Mode Shape, 3D (solid) toolbar, click Plot.
6 Click the Zoom Extents button in the Graphics toolbar.

COMPONENT I (COMPI)

Add a Shell interface with the same data, and compute the eigenfrequencies.

ADD PHYSICS

I In the Home toolbar, click Add Physics to open the Add Physics window.
2 Go to the Add Physics window.
3 In the tree, select Structural Mechanics>Shell (shell).
4 Click Add to Component I in the window toolbar.
5 In the Home toolbar, click Add Physics to close the Add Physics window.

SHELL (SHELL)

Select Boundary 1 only.

Thickness and Offset I

Since the inner boundary of the cylinder is used as geometry for the shell interface, you must use an offset to position the midsurface at the correct radial coordinate.

I In the Model Builder window, under Component I (comp I)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type thic.
4 From the Offset definition list, choose Relative offset.
5 In the $z_{\text {reloffset }}$ text field, type -1 .

MATERIALS

Material Link 2 (matlnk2)

I In the Model Builder window, under Component I (compl) right-click Materials and choose More>Material Link.

2 In the Settings window for Material Link, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 1 only.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies> Eigenfrequency.

4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for the Solid Mechanics interface.

5 Click Add Study in the window toolbar.
6 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

I In the Model Builder window, click Study 2.
2 In the Settings window for Study, type Study 2, 2D axisymmetric shell in the Label text field.

3 In the Home toolbar, click Compute.

RESULTS

Mode Shape, 3D (shell)

I In the Model Builder window, under Results click Mode Shape, 3D (shell).
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Eigenfrequency (Hz) list, choose 243.64.
4 Click the Show Grid button in the Graphics toolbar.
5 In the Mode Shape, 3D (shell) toolbar, click Plot.

R 00 T

Now, add a 3D solid sector with cyclic symmetry boundary conditions and compute the eigenfrequencies.

ADD COMPONENT

In the Model Builder window, right-click the root node and choose Add Component>3D.

GEOMETRY 2

Work Plane I (wpl)

I In the Geometry toolbar, click Work Plane.
2 In the Settings window for Work Plane, locate the Plane Definition section.
3 From the Plane list, choose xz-plane.

GEOMETRY I

Rectangle I (rl)
In the Model Builder window, under Component I (compl)>Geometry I right-click Rectangle I (rI) and choose Copy.

GEOMETRY 2

Plane Geometry

In the Model Builder window, under Component 2 (comp2)>Geometry 2>
Work Plane I (wpI) click Plane Geometry.
Work Plane I (wpl)>Rectangle I (rl)
Right-click Plane Geometry and choose Paste Rectangle.
Revolve I (revl)
I In the Geometry toolbar, click Revolve.
2 In the Settings window for Revolve, locate the Revolution Angles section.
3 Click the Angles button.
4 In the End angle text field, type 15.
5 Click Build All Objects.

ADD PHYSICS

I In the Home toolbar, click Add Physics to open the Add Physics window.
2 Go to the Add Physics window.

3 In the tree, select Structural Mechanics>Solid Mechanics (solid).
4 Click Add to Component 2 in the window toolbar.
5 In the Model Builder window, click Component 2 (comp2).
6 In the Home toolbar, click Add Physics to close the Add Physics window.

SOLID MECHANICS 2 (SOLID2)

Periodic Condition I

I In the Physics toolbar, click Boundaries and choose Periodic Condition.
2 Select Boundaries 2 and 5 only.
3 In the Settings window for Periodic Condition, locate the Periodicity Settings section.
4 From the Type of periodicity list, choose Cyclic symmetry.

MESH 2

Mapped I

I In the Model Builder window, under Component 2 (comp2) right-click Mesh 2 and choose More Operations>Mapped.

2 Select Boundary 3 only.

Distribution I

I Right-click Mapped I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 2.
4 Select Edges 2 and 7 only.

Mapped I

I In the Model Builder window, click Mapped I.
2 Click Build Selected.

Swept I

In the Model Builder window, right-click Mesh 2 and choose Swept.

Distribution I

I In the Model Builder window, right-click Swept I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 20.
4 Click Build AII.

MATERIALS

Material Link 3 (matlnk3)

In the Model Builder window, under Component 2 (comp2) right-click Materials and choose More>Material Link.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies> Eigenfrequency.

4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for the Solid Mechanics and Shell interfaces.

5 Click Add Study in the window toolbar.
6 From the Home menu, choose Add Study.

STUDY 3

I In the Model Builder window, click Study 3.
2 In the Settings window for Study, type Study 3, 3D solid sector in the Label text field.

Step I: Eigenfrequency

I In the Model Builder window, under Study 3, 3D solid sector click Step I: Eigenfrequency.
2 In the Settings window for Eigenfrequency, locate the Study Settings section.
3 Select the Desired number of eigenfrequencies check box.
4 In the associated text field, type 10.
5 In the Model Builder window, collapse the Study 3, 3D solid sector node.
6 In the Home toolbar, click Compute.

RESULTS

Mode Shape (solid2)

I In the Settings window for 3D Plot Group, locate the Data section.
2 From the Eigenfrequency $(\mathbf{H z})$ list, choose 243.5.
3 In the Mode Shape (solid2) toolbar, click Plot.

Datasets

In the Model Builder window, click Datasets.

Sector 3D I

I In the Results toolbar, click More Datasets and choose Sector 3D.
2 In the Settings window for Sector 3D, locate the Symmetry section.
3 In the Number of sectors text field, type 360/15.
4 From the Sectors to include list, choose Manual.
5 In the Start sector text field, type 18.
6 In the Number of sectors to include text field, type 15.
Mode Shape (solid2)
I In the Model Builder window, click Mode Shape (solid2).
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose Sector 3D I.
4 Click the Zoom Extents button in the Graphics toolbar.
5 In the Mode Shape (solid2) toolbar, click Plot.
6 Click the Show Grid button in the Graphics toolbar.
Also twisting modes can be displayed.
7 From the Eigenfrequency (Hz) list, choose $\mathbf{1 5 5 . 0 4}$.
8 In the Mode Shape (solid2) toolbar, click Plot.

SOLID MECHANICS (SOLID)
The twisting modes can also be computed using the axisymmetric Solid Mechanics interface. To do that, use circumferential mode extension.

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the Axial Symmetry Approximation section.

3 Select the Circumferential mode extension (time-harmonic) check box.

STUDY I, $2 D$ AXISYMMETRIC SOLID

Step I: Eigenfrequency

I In the Model Builder window, under Study I, 2D axisymmetric solid click Step I: Eigenfrequency.

2 Find the Physics and Variable Selection subsection. In the table, clear the Solve check box for Shell and Solid Mechanics 2 interface.

3 In the Settings window for Eigenfrequency, locate the Study Settings section.
4 Select the Desired number of eigenfrequencies check box.
5 In the associated text field, type 10.
6 In the Home toolbar, click Compute.

RESULTS

Mode Shape, 3D (solid)

In the Model Builder window, expand the Results>Mode Shape, 3D (solid) node.

Deformation

To display also twisting modes, add the rotational displacement component to the deformation.

I In the Model Builder window, expand the Results>Mode Shape, 3D (solid)>Surface I node, then click Deformation.

2 In the Settings window for Deformation, locate the Expression section.
3 In the PHI component text field, type v.

Mode Shape, 3D (solid)

Display the first twist mode.
I In the Model Builder window, click Mode Shape, 3D (solid).
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Eigenfrequency (Hz) list, choose $\mathbf{I 5 5 . 0 4}$.
4 In the Mode Shape, 3D (solid) toolbar, click Plot.
5 From the Eigenfrequency (Hz) list, choose 243.5.
6 In the Mode Shape, 3D (solid) toolbar, click Plot.

STUDY 2, 2D AXISYMMETRIC SHELL

Step I: Eigenfrequency

I In the Model Builder window, under Study 2, 2D axisymmetric shell click Step I: Eigenfrequency.

2 Find the Physics and Variable Selection subsection. In the table, clear the Solve check box for Solid Mechanics 2 interface.

In-Plane and Space Truss

Introduction

In the following example you first build and solve a simple 2D truss model using the 2D Truss interface. Later on, you analyze a 3D variant of the same problem using the 3D Truss interface. This model calculates the deformation and forces of a simple geometry. The example is based on problem 11.1 in Aircraft Structures for Engineering Students by T.H.G Megson (Ref. 1). The results are compared with the analytical results given in Ref. 1.

Model Definition

The 2D geometry consists of a square symmetrical truss built up by five members. All members have the same cross-sectional area. The side length is L, and the Young's modulus is E.

Figure 1: The truss geometry.
In the 3D case, another copy of the diagonal bars are rotated 90° around the vertical axis so that a cube with one space diagonal is generated. The figure above is thus applicable to a view in the $z y$-plane as well as in the $x y$-plane. The central bar is then given twice the area of the other members. In this way, a space truss with exactly the same type of symmetry, but twice the vertical stiffness is generated.

GEOMETRY

- Truss side length, $L=2 \mathrm{~m}$
- The truss members have a circular cross section with a radius of 0.05 m . In the 3 D case, the area of the central bar is doubled.

MATERIAL

Aluminum: Young's modulus, $E=70 \mathrm{GPa}$.

CONSTRAINTS

Displacements in both directions are constrained at a and b . In the 3D case, the two new points are constrained in the same way.

LOAD

A vertical force F of 50 kN is applied at the bottom corner. In the 3D case, the value 100 kN is used instead in order to get the same displacements.

Results and Discussion

The following table shows a comparison between the results calculated with the Structural Mechanics Module and the analytical results from Ref. 1.

RESULT	COMSOL MULTIPHYSICs	Ref. 1
Displacement at d	$-5.14 \cdot 10^{-4} \mathrm{~m}$	$-5.15 \cdot 10^{-4} \mathrm{~m}$
Displacement at c	$-2.13 \cdot 10^{-4} \mathrm{~m}$	$-2.13 \cdot 10^{-4} \mathrm{~m}$
Axial force in member ac=bc	-10.4 kN	-10.4 kN
Axial force in member ad=bd	25.0 kN	25.0 kN
Axial force in member cd	14.6 kN	14.6 kN

The results are in nearly perfect agreement.
Figure 2 and Figure 3 show plots visualizing the deformed geometry together with the axial forces in the truss members.

Figure 2: Deformed geometry and axial forces for the 2D case.

Figure 3: Deformed geometry and axial forces for the 3D case.

Notes About the COMSOL Implementation

In this example you build the 2D and the 3D truss as two different components within the same MPH file. This is not essential, you could equally well choose to create the components in separate MPH files.

Reference

1. T.H.G. Megson, Aircraft Structures for Engineering Students, Edward Arnold, p. 404,1985

Application Library path: Structural_Mechanics_Module/
Verification_Examples/inplane_and_space_truss

Modeling Instructions

From the File menu, choose New

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Truss (truss).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GEOMETRY I
Square I (sql)
I In the Geometry toolbar, click Square.
2 In the Settings window for Square, locate the Size section.
3 In the Side length text field, type 2.
4 Locate the Rotation Angle section. In the Rotation text field, type 45.

5 Locate the Object Type section. From the Type list, choose Curve.
6 Click Build All Objects.
7 Click the Zoom Extents button in the Graphics toolbar.

Line Segment I (|s|)

I In the Geometry toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 In the y text field, type sqrt(8).
6 Click Build All Objects.

TRUSS (TRUSS)
Cross Section Data I
I In the Model Builder window, under Component I (compl)>Truss (truss) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Data section.
3 In the A text field, type pi/4*0.05^2.
Pinned I
I In the Physics toolbar, click Points and choose Pinned.
2 Select Points 1 and 4 only.
Point Load I
I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 2 only.
3 In the Settings window for Point Load, locate the Force section.
4 Specify the \mathbf{F}_{P} vector as

0 x
$-50 e 3 y$

MATERIALS
Material I (matl)
I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	70 e 9	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	2900	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

STUDY I
In the Home toolbar, click Compute.

RESULTS

Force (truss)
I In the Model Builder window, expand the Results>Force (truss) node, then click Force (truss).

2 In the Settings window for 2D Plot Group, locate the Color Legend section.
3 Select the Show maximum and minimum values check box.
4 Click the Zoom Extents button in the Graphics toolbar.

Derived Values

Next, compute the displacements at d (Vertex 2) and c (Vertex 3).

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 Select Points 2 and 3 only.
3 In the Settings window for Point Evaluation, click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I>Truss> Displacement>Displacement field - m>v-Displacement field, \mathbf{Y} component.

4 Click Evaluate.
Although you can read off the values of the local axial force in the members ac and ad from the max and min values for the color legend for the plot in the Graphics window, it is instructive to see how you can compute such values more generally.

DEFINITIONS

Add nonlocal average couplings for the members ac, ad, and cd. You will use these for defining variables that evaluate the axial forces in these members.

Average I (aveopl)

I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, type aveop_ac in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

4 Select Boundary 5 only.
Average 2 (aveop2)
I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, type aveop_ad in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

4 Select Boundary 4 only.

Average 3 (aveop3)

I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, type aveop_cd in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.
4 Select Boundary 3 only.

Variables I

I In the Definitions toolbar, click Local Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit
F_ac	aveop_ac(truss.Nxl)	N
F_ad	aveop_ad(truss.Nxl)	N
F_cd	aveop_cd(truss.Nxl)	N

STUDY I

Update the solution to evaluate the variables you just defined.

Solution I (soll)

I In the Model Builder window, expand the Study I>Solver Configurations node.
2 Right-click Study I>Solver Configurations>Solution I (soll) and choose Solution>Update.

RESULTS

Global Evaluation I
I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, locate the Expressions section.
3 In the table, enter the following settings:

Expression	Unit	Description
F_ac	N	Axial force, member ac
F_ad	N	Axial force, member ad
F_cd	N	Axial force, member cd

4 Click Evaluate.
The values in the Table window agree with those of the analytical reference solution.

TABLE

I Go to the Table window.
Now create the 3D truss as a new model.

ADD COMPONENT

In the Model Builder window, right-click the root node and choose Add Component>3D.

ADD PHYSICS

I In the Home toolbar, click Add Physics to open the Add Physics window.
2 Go to the Add Physics window.
3 In the tree, select Recently Used>Truss (truss).
4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Study I.

5 Click Add to Component 2 in the window toolbar.
6 In the Home toolbar, click Add Physics to close the Add Physics window.

ROOT

In the Model Builder window, click the root node.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.

3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary. Switch off the 2D truss physics in this study.

4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for the Truss (truss) interface.

5 Click Add Study in the window toolbar.
6 From the Home menu, choose Add Study.

GEOMETRY 2

In the Model Builder window, under Component 2 (comp2) click Geometry 2.
Work Plane I (wpl)
In the Geometry toolbar, click Work Plane.
Work Plane I (wpl)>Plane Geometry
I Right-click Work Plane I (wpI) and choose Show Work Plane.
2 In the Model Builder window, click Plane Geometry.
Work Plane I (wpl)>Square I (sql)
I In the Work Plane toolbar, click Square.
2 In the Settings window for Square, locate the Size section.
3 In the Side length text field, type 2.
4 Locate the Rotation Angle section. In the Rotation text field, type 45.
5 Locate the Object Type section. From the Type list, choose Curve.
6 In the Work Plane toolbar, click Build All.
7 In the Model Builder window, click Geometry 2.

Rotate I (rot I)

I In the Geometry toolbar, click Transforms and choose Rotate.
2 In the Settings window for Rotate, locate the Input section.
3 Select the Keep input objects check box.
4 Select the object wpI only.
5 Locate the Rotation section. From the Axis type list, choose Cartesian.
6 In the y text field, type 1.
7 In the \mathbf{z} text field, type 0 .
8 In the Angle text field, type 90.
9 Click Build All Objects.

10 In the Model Builder window, click Geometry 2.
Line Segment I (|s |)
I In the Geometry toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 In the y text field, type sqrt (8).
6 Click Build All Objects.

DEFINITIONS (COMP2)
Add nonlocal average couplings for the members ac, ad, and cd and corresponding axial force variables.

I In the Model Builder window, under Component 2 (comp2) click Definitions.
Average 4 (aveop4)
I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, type aveop_ac in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Edge.
4 Select Edge 8 only.
5 In the Model Builder window, under Component 2 (comp2) click Definitions.
Average 5 (aveop5)
I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, type aveop_ad in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Edge.
4 Select Edge 4 only.
5 In the Model Builder window, click Definitions.

Average 6 (aveop6)

I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, type aveop_cd in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Edge.
4 Select Edge 5 only.
5 In the Model Builder window, click Definitions.

Variables 2

I In the Definitions toolbar, click Local Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit
F_ac	aveop_ac(truss2.Nxl)	N
F_ad	aveop_ad(truss2.Nxl)	N
F_cd	aveop_cd(truss2. Nxl)	N

TRUSS 2 (TRUSS2)

Cross Section Data I

I In the Model Builder window, under Component 2 (comp2)>Truss 2 (truss2) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Data section.
3 In the A text field, type $\mathrm{pi} / 4^{*} 0.05^{\wedge} 2$.

Cross Section Data 2

I In the Physics toolbar, click Edges and choose Cross Section Data.
2 Select Edge 5 only.
3 In the Settings window for Cross Section Data, locate the Cross Section Data section.
4 In the A text field, type 2*pi/4*0.05^2.

Pinned I

I In the Physics toolbar, click Points and choose Pinned.
2 Select Points 1, 3, 4, and 6 only.
Point Load I
I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 2 only.
3 In the Settings window for Point Load, locate the Force section.
4 Specify the \mathbf{F}_{P} vector as

0	x
$-100 e 3$	y
0	z

MATERIALS

Material 2 (mat2)

I In the Model Builder window, under Component 2 (comp2) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	70 e 9	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	2900	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

STUDY 2

In the Home toolbar, click Compute.

RESULTS

Force (truss2)

I In the Settings window for 3D Plot Group, locate the Color Legend section.
2 Select the Show maximum and minimum values check box.
Derived Values
Proceed to compute the displacements at d (Vertex 2) and c (Vertex 5).

Point Evaluation 2

I In the Model Builder window, right-click Derived Values and choose Point Evaluation.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study 2/Solution 2 (3) (sol2).
4 Select Points 2 and 5 only.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component $\mathbf{2}>$ Truss $\mathbf{2}>$ Displacement $>$ Displacement field - m>v2 Displacement field, \mathbf{Y} component.

6 Click New Table.

TABLE

I Go to the Table window.
The results are nearly identical to those of the 2 D case.
Finally, compute the axial force values.

RESULTS

Derived Values

In the Model Builder window, under Results click Derived Values.

Global Evaluation 2

I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, locate the Data section.
3 From the Dataset list, choose Study 2/Solution 2 (2) (sol2).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
comp2.F_ac	N	Axial force, member ac
comp2.F_ad	N	Axial force, member ad
comp2.F_cd/2	N	Axial force, member cd

Because the applied force was doubled to get the same displacement as, in the 2D case, you need to divide the value of the axial force in member cd by 2 to get a value comparable to that of the 2 D case.

5 Click Evaluate.
Again, the values in the Results table agree very well with the reference solution.

In-Plane Framework with Discrete Mass and Mass Moment of Inertia

Introduction

In the following example you build and solve a 2D beam model using the 2D Structural Mechanics Beam interface. This example describes the eigenfrequency analysis of a simple geometry. A point mass and point mass moment of inertia are used. The two first eigenfrequencies are compared with the values given by an analytical expression.

In addition, it is shown how to evaluate modal participation factors and modal masses.

Model Definition

The geometry consists of a frame with one horizontal and one vertical member. The cross section of both members has an area, A, and an area moment of inertia, I. The length of each member is L and Young's modulus is E. A point mass m is added at the middle of the horizontal member and a point mass moment of inertia J at the corner (see Figure 1 below).

Figure 1: Definition of the problem.

GEOMETRY

- Framework member lengths, $L=1 \mathrm{~m}$.
- The framework members has a square cross section with a side length of 0.03 m giving an area of $A=9 \cdot 10^{-4} \mathrm{~m}^{2}$ and an area moment of inertia of $I=0.03^{4} / 12 \mathrm{~m}^{4}$.

MATERIAL

Young's modulus $E=200 \mathrm{GPa}$.

MASS

- Point mass $m=1000 \mathrm{~kg}$.
- Point mass moment of inertia $J=m r^{2}$ where r is chosen as $L / 4$. This gives the value $62.5 \mathrm{kgm}^{2}$.

CONSTRAINTS

The beam is pinned at $x=0, y=0$ and $x=1, y=1$, meaning that the displacements are constrained whereas the rotational degrees of freedom are free.

Results and Discussion

The analytical values for the two first eigenfrequencies $f_{e 1}$ and $f_{e 2}$ are given by:

$$
\begin{gathered}
\omega_{e 1}^{2}=\frac{48 E I}{m L^{3}} \\
\omega_{e 2}^{2}=\frac{48 \cdot 32 E I}{7 m L^{3}}
\end{gathered}
$$

and

$$
\begin{aligned}
& f_{e 1}=\frac{\omega_{e 1}}{2 \pi} \\
& f_{e 2}=\frac{\omega_{e 2}}{2 \pi}
\end{aligned}
$$

where ω is the angular frequency.
The following table shows a comparison between the eigenfrequencies calculated with COMSOL Multiphysics and the analytical values.

Eigenmode	COMSOL MULTIPHYSics	ANALYTical
I	4.05 Hz	4.05 Hz
2	8.65 Hz	8.66 Hz

The following two plots visualize the two eigenmodes.

Figure 2: The first eigenmode.

Figure 3: The second eigenmode.

Because the beams have no density in this example, the total mass is the 1000 kg supplied by the point mass. The mass moment of inertia is also a point contribution, and has the value $62.5 \mathrm{kgm}^{2}$. The mass represented by the computed eigenmodes can be evaluated using the modal participation factors, see Figure 4 and Figure 5. In this case, it can be seen that in the y direction, the correspondence is perfect, while almost none of the mass in the x direction is represented. The axial deformation mode for the horizontal member has a higher frequency, and was not computed. Similarly, all rotational inertia is captured by the first two modes.

```
Messages Progress Log Table 2 }
```



```
\begin{tabular}{|c|c|c|c|}
\hline Eigenfrequency ( Hz ) & Participation factor, normalized, X -translation (1) & Participation factor, normalized, Y-translation (1) & Effective modal mass, Y-translation (kg) \\
\hline 4.0501 & -0.0085424 & 25.314 & 640.78 \\
\hline 8.6474 & -0.011483 & -18.953 & 359.22 \\
\hline
\end{tabular}
```

Figure 4: Participation factors for each eigenfrequency.

```
Messages Progress Log Table 3
```



```
Integral: Effective modal mass, Y-translation (kg) Integral: Effective modal mass, Z-rotation (kg*m^2)
1000.0
    62.500
```

Figure 5: Summed modal masses.

Notes About the COMSOL Implementation

The variables for evaluation of participation factors are created in the Participation Factors node under Definitions. This node is created automatically when an Eigenfrequency study is added.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/inplane_framework_freq

Modeling Instructions

From the File menu, choose New.

NE W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Beam (beam).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Eigenfrequency.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file inplane_framework_freq_parameters.txt.

GEOMETRY I

Polygon I (poll)

I In the Geometry toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Object Type section.
3 From the Type list, choose Open curve.
4 Locate the Coordinates section. In the table, enter the following settings:

$\mathbf{x (m)}$	$y(m)$
0	0
0	L
$L / 2$	L
L	L

5 Click Build All Objects.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	Emod	Pa	Basic
Poisson's ratio	nu	0	I	Basic
Density	rho	0	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

BEAM (BEAM)

Cross Section Data I

I In the Model Builder window, under Component I (compl)>Beam (beam) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Definition section.
3 From the list, choose Common sections.
4 In the h_{y} text field, type a.
5 In the h_{z} text field, type a.

Pinned I

I In the Physics toolbar, click Points and choose Pinned.
2 Select Points 1 and 4 only.

Point Mass I

I In the Physics toolbar, click Points and choose Point Mass.
2 Select Point 3 only.
3 In the Settings window for Point Mass, locate the Point Mass section.
4 In the m text field, type m.

Point Mass 2

I In the Physics toolbar, click Points and choose Point Mass.
2 Select Point 2 only.
3 In the Settings window for Point Mass, locate the Point Mass section.
4 In the J_{z} text field, type J.

STUDY I

Step I: Eigenfrequency

I In the Model Builder window, under Study I click Step I: Eigenfrequency.

2 In the Settings window for Eigenfrequency, locate the Study Settings section.
3 Select the Desired number of eigenfrequencies check box.
4 In the associated text field, type 2.
5 In the Home toolbar, click Compute.

RESULTS

Line I
I In the Model Builder window, expand the Results>Mode Shape (beam) node, then click Line 1 .

2 In the Mode Shape (beam) toolbar, click Plot.
3 Click the Zoom Extents button in the Graphics toolbar.

Mode Shape (beam)

I In the Model Builder window, click Mode Shape (beam).
2 In the Settings window for 2D Plot Group, locate the Data section.
3 From the Eigenfrequency (Hz) list, choose 8.6474.
4 In the Mode Shape (beam) toolbar, click Plot.

Derived Values

Compare the computed eigenfrequencies to the analytical values.
Global Evaluation I
I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, type Eigenfrequnecy comparison in the Label text field.

3 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
f1	$1 / \mathrm{s}$	Eigenfrequency 1, analytical
f2	$1 / \mathrm{s}$	Eigenfrequency 2, analytical

4 Click Evaluate.
Participation factors (Study I)
Examine the modal participation factors.
Finally, compute the total effective mass accounted for in the computed eigenmodes.

Global Evaluation 2

I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, type Summed modal masses in the Label text field.

3 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I>Definitions>Participation Factors I>Effective modal mass> mpfI.mEffLY - Effective modal mass, Y-translation - kg.

4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
$m p f 1 . m E f f L Y$	kg	Effective modal mass, Y-translation
$m p f 1 . m E f f R Z$	$\mathrm{~kg}^{\star} \mathrm{m}^{\wedge} 2$	Effective modal mass, Z-rotation

5 Locate the Data Series Operation section. From the Operation list, choose Integral.
6 From the Method list, choose Summation.
7 Click Evaluate.

Kirsch Infinite Plate Problem

Introduction

In this example, you perform a static stress analysis to obtain the stress distribution in the vicinity of a small hole in an infinite plate. Two approximations of the infinite plate are evaluated. The first one uses a plate that is large compared to the hole while the second one employs an infinite element domain.

The problem is a classic benchmark, and the theoretical solution was derived by G. Kirsch in 1898. This implementation is based on the Kirsch plate model described on page 184 in Mechanics of Materials, D. Roylance (Ref. 1). The stress level is compared with the theoretical values.

Model Definition

Model the infinite plate in a 2D plane stress approximation as a 2 m -by- 2 m plate with a hole with a radius of 0.1 m in the middle. Due to symmetry in load and geometry you need to analyze only a quarter of the plate, see Figure 1. Choose the size of the plate sufficiently large so that the stress concentration close to the hole is not affected.

Figure 1: Geometry model of the Kirsch plate with rollers defining the symmetry plane.
When modeling a plate using the infinite element domain you need to create an additional layers around the plate. Those layers simulate the part that stretches to infinity and can have an arbitrarily length along the direction that stretches to infinity, for example 0.1 m .

In the model the infinite element domain is created along the y direction only since the numerical results along $x=0$ symmetry plane are compared to an analytical reference and infinite element domain in x direction only have a minor influence.

MATERIAL

Isotropic material with, $E=2.1 \cdot 10^{11} \mathrm{~Pa}, \nu=0.3$.

LOAD

A distributed stress of $10^{3} \mathrm{~Pa}$ on the right edge pointing in the x direction.

CONSTRAINTS

Symmetry planes, $x=0, y=0$.

Results and Discussion

The distribution of the normal stress in the x direction, σ_{x}, is shown in Figure 2and
Figure 3. The stress contours of the finite model and the infinite model are very similar.

Figure 2: Distribution of the normal stress in the x direction for the finite model.

Figure 3: Distribution of the normal stress in the x direction for the infinite model.
According to Ref. 1 the stress σ_{x} along the vertical symmetry line can be calculated as

$$
\begin{equation*}
\sigma_{x}=\frac{1000}{2}\left(2+\frac{0,1^{2}}{y^{2}}+3 \frac{0,1^{4}}{y^{4}}\right) \tag{1}
\end{equation*}
$$

Figure 4 shows the stress σ_{x} obtained from the solved models, and plotted as a function of the true y-coordinate along the left symmetry edge, which are in close agreement with the theoretical value according to Equation 1.

Figure 4: Normal stress, simulated results (solid line) versus the theoretical values (dashed line).

Away from the hole, stresses from the finite model starts drifting from the theoretical values, while stresses from the infinite model matches closely with the theoretical value.

The stress error is reported in the following table:
TABLE I: STRESS ERROR RELATIVE TO ANALYTICAL SOLUTION.

	Finite PLATE	INFINITE PLATE
Near hole	I.I \%	0.1%
Away from hole	-4%	-0.1%

Notes About the COMSOL Implementation

The default scaling function in Infinite Element Domain is rational. This type of function is well adapted to cases where the degrees of freedom vanish to zero at infinity. The present model is submitted to infinite loads at infinity, that means that constant strain and linear
displacement are expected. For this type of infinite solution, polynomial functions are preferred. The relation between the stretched and geometric coordinates is

$$
X_{\mathrm{m}}-X_{0}=f\left(\frac{X-X_{0}}{\Delta X}\right)
$$

where the function f is defined with an analytic function. Here we want f as a second-order polynomial: $f(\xi)=a \xi^{2}+b \xi+c$. The continuity condition at $\mathrm{X} 0, f(0)=0$, and at the end of the domain $f(1)=p_{\mathrm{w}}$ imply that the polynomial is:

$$
f(\xi)=\left(p_{\mathrm{w}}-b\right) \xi^{2}+b \xi
$$

The infinite element domain gives best results when meshed with rectangular elements; see Figure 5.

Figure 5: Infinite element domain modeled with rectangular elements.

Reference

1. D. Roylance, Mechanics of Materials, John Wiley \& Sons, 1996.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/kirsch_plate

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD
I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

| Name | Expression | Value |
| :--- | :--- | :--- | Description \quad| pw | $10[\mathrm{~m}]$ | 10 m |
| :--- | :--- | :--- |
| Physical width of infinite element
 domain | | |
| deltaY | $0.1[\mathrm{~m}]$ | 0.1 m |
| Geometric thickness of infinite
 element layer | | |

Draw a rectangle with a top layer that represents the infinite element domain.

GEOMETRY I

Rectangle I (rl)
I In the Geometry toolbar, click Rectangle.

2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Height text field, type 1+deltaY.
4 Click to expand the Layers section. Clear the Layers on bottom check box.
5 Select the Layers on top check box.
6 In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	deltaY

Circle I (cl)
I In the Geometry toolbar, click Circle.
2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type 0.1.
4 Click Build Selected.
Difference I (difl)
I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
2 Add the rectangle and remove the circle in the Difference section.
3 In the Settings window for Difference, click Build All Objects.

GLOBAL DEFINITIONS

First add an analytical function for stress, based on Kirsch's theoretical solution of an infinite plate.

Analytic I (anl)

I In the Home toolbar, click Functions and choose Global>Analytic.
2 In the Settings window for Analytic, type Analytic Stress in the Label text field.
3 In the Function name text field, type AnaStress.
4 Locate the Definition section. In the Expression text field, type 1000/2* $\left(2+(0.1 / y)^{\wedge} 2^{+}\right.$ 3* (0.1/y) ^4).

5 In the Arguments text field, type y.
6 Locate the Units section. In the Arguments text field, type m.
7 In the Function text field, type $\mathrm{N} / \mathrm{m}^{\wedge} 2$.
Create an analytic polynomial function to define the scaling in the infinite element domain.

DEFINITIONS

Analytic 2 (an2)
I In the Home toolbar, click Functions and choose Global>Analytic.
2 In the Settings window for Analytic, locate the Definition section.
3 In the Expression text field, type (pw-10*deltaY)* $x^{\wedge} 2+10 * d e l t a Y^{*} x$.
4 Locate the Units section. In the Arguments text field, type m.
5 In the Function text field, type m.
Infinite Element Domain I (iel)
I In the Definitions toolbar, click Infinite Element Domain.
2 Select Domain 2 only.
3 In the Settings window for Infinite Element Domain, locate the Scaling section.
4 From the Coordinate stretching type list, choose User defined.
5 From the Stretching function list, choose Analytic 2 (an2).
Add a variable representing the physical y-coordinate to be used in postprocessing.

Variables I

I In the Model Builder window, right-click Definitions and choose Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit	Description
ym	if $($ dom $==2$, ie1.Ym, y $)$	m	Physical y-coordinate

SOLID MECHANICS (SOLID)
First set up a model without the Infinite Element Domain.
I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the Domain Selection section.
3 In the list, select 2 (infinite elements).
4 Click Remove from Selection.
5 Select Domain 1 only.
6 Locate the 2D Approximation section. From the list, choose Plane stress.
7 Locate the Thickness section. In the d text field, type 0.1.

Symmetry I

I In the Physics toolbar, click Boundaries and choose Symmetry.
2 Select Boundaries 1, 2, and 5 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundaries 6 and 7 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 Specify the \mathbf{F}_{A} vector as

$1 e 3$	x
0	y

Now set up a model with the infinite element domain.

ADD PHYSICS

I In the Physics toolbar, click Add Physics to open the Add Physics window.
2 Go to the Add Physics window.
3 In the tree, select Structural Mechanics>Solid Mechanics (solid).
4 Click Add to Component I in the window toolbar.
5 In the Model Builder window, click Component I (compI).
6 In the Physics toolbar, click Add Physics to close the Add Physics window.

SOLID MECHANICS 2 (SOLID2)

I In the Settings window for Solid Mechanics, locate the 2D Approximation section.
2 From the list, choose Plane stress.
3 Locate the Thickness section. In the d text field, type 0.1.

Symmetry I

I In the Physics toolbar, click Boundaries and choose Symmetry.
2 Select Boundaries 1, 2, and 5 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundaries 6 and 7 only.
3 In the Settings window for Boundary Load, locate the Force section.

4 Specify the \mathbf{F}_{A} vector as

$1 e 3$	x
0	y

materials

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit
Young's modulus	E	2.1 e 11	Pa
Poisson's ratio	nu	0.3	I
Density	rho	7800	$\mathrm{~kg} / \mathrm{m}^{3}$

MESH I
For the finite plate selection, a customized free triangular mesh must be used for getting a better solution in the stress concentration region. A lower element size is set at the expected location of stress concentration.

Free Triangular I

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose Free Triangular.

2 In the Settings window for Free Triangular, locate the Domain Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domain 1 only.
Size I
I Right-click Free Triangular I and choose Size.
2 In the Settings window for Size, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Point.
4 Select Point 1 only.
5 Locate the Element Size section. Click the Custom button.
6 Locate the Element Size Parameters section. Select the Maximum element size check box.

7 In the associated text field, type 0.02 .
Infinite elements give better results when meshed with rectangular elements.

Mapped I

In the Model Builder window, right-click Mesh I and choose Mapped.

Distribution I

I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundary 2 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 4.

5 Click Build AlI.

STUDY I

In the Home toolbar, click Compute.

RESULTS

To check the error in the computed results, make a point evaluation of stresses near the hole $(y=0.1)$ and away from the hole $(y=1)$ for the solution computed with and without infinite element domain. The error can be determined by finding the difference between computed stresses and analytical stresses.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Error Evaluation in the Label text field.

3 Select Points 1 and 2 only.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit
(solid.sx-AnaStress (y))/ AnaStress (y)	
(solid2.sx-AnaStress AnaStress (y)	Error in finite plate

5 Click Evaluate.

Stress (solid)

The default plots show the von Mises stress combined with a scaled deformation of the plate. Remove deformation and display the stress field in the x direction instead since the external load is oriented in that direction.

Surface I

I In the Model Builder window, expand the Stress (solid) node, then click Surface I.
2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics>Stress> Stress tensor (spatial frame) - N/msolid.sx - Stress tensor, x component.

Deformation

I In the Model Builder window, expand the Surface I node.
2 Right-click Deformation and choose Delete.

Surface I

I In the Model Builder window, expand the Results>Stress (solid2) node, then click

Surface I.

2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics $\mathbf{2} \boldsymbol{>}$ Stress $\mathbf{>}$ Stress tensor (spatial frame) - $\mathbf{N} / \mathbf{m}^{2}>$ solid2.sx - Stress tensor, x component.

Deformation

I In the Model Builder window, expand the Surface I node.
2 Right-click Deformation and choose Delete.

ID Plot Group 5

I In the Results toolbar, click ID Plot Group.
2 In the Settings window for ID Plot Group, type Stress Profile in the Label text field.

Line Graph I

I Right-click Stress Profile and choose Line Graph.
2 Select Boundaries 1 and 2 only.
3 In the Settings window for Line Graph, locate the \mathbf{y}-Axis Data section.
4 In the Expression text field, type AnaStress (ym).
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type ym.
7 In the Stress Profile toolbar, click Plot.

8 Click to expand the Legends section. From the Legends list, choose Manual.
9 Select the Show legends check box.
10 In the table, enter the following settings:

Legends

Analytical
II Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
I2 In the Stress Profile toolbar, click Plot.

Line Graph 2

I In the Model Builder window, right-click Stress Profile and choose Line Graph.
2 Select Boundary 1 only.
3 In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the \mathbf{y}-axis data section. From the menu, choose Component I>Solid Mechanics>Stress> Stress tensor (spatial frame) - $\mathrm{N} / \mathrm{m}^{2}>$ solid.sx - Stress tensor, x component.
4 Locate the \mathbf{x}-Axis Data section. From the Parameter list, choose Expression.
5 In the Expression text field, type y.
6 Locate the Legends section. Select the Show legends check box.
7 From the Legends list, choose Manual.
8 In the table, enter the following settings:

Legends

Finite plate
Line Graph 3
I Right-click Stress Profile and choose Line Graph.
2 Select Boundaries 1 and 2 only.
3 In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the \boldsymbol{y}-axis data section. From the menu, choose Component 1>Solid Mechanics 2> Stress $>$ Stress tensor (spatial frame) - $\mathrm{N} / \mathrm{m}^{2}>$ solid2.sx - Stress tensor, x component.
4 Locate the \mathbf{x}-Axis Data section. From the Parameter list, choose Expression.
5 In the Expression text field, type ym.
6 Locate the Legends section. Select the Show legends check box.
7 From the Legends list, choose Manual.

8 In the table, enter the following settings:
Legends
Infinite plate
Stress Profile
I In the Model Builder window, click Stress Profile.
2 In the Settings window for ID Plot Group, locate the Axis section.
3 Select the Manual axis limits check box.
4 In the \mathbf{x} minimum text field, type 0 .
5 In the \mathbf{x} maximum text field, type 1.5.
6 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
7 In the associated text field, type Physical y-coordinate (m).
8 Select the \mathbf{y}-axis label check box.
9 In the associated text field, type Stress ($\mathrm{N} / \mathrm{m}^{2}$).
10 In the Stress Profile toolbar, click Plot.

Large Deformation Analysis of a Beam

Model Definition

In this example you study the deflection of a cantilever beam undergoing very large deflections. The model is called "Straight Cantilever GNL Benchmark" and is described in detail in section 5.2 of NAFEMS Background to Finite Element Analysis of Geometric Non-linearity Benchmarks (Ref. 1). A schematic description of the beam and its characteristics is shown in Figure 1.

Figure 1: Cantilever beam geometry.

GEOMETRY

- The length of the beam is 3.2 m .
- The cross section is a square with side lengths 0.1 m .

MATERIAL

The beam is linear elastic with $E=2.1 \cdot 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $v=0$.

CONSTRAINTS AND LOADS

- The left end is fixed.
- The right end is subjected to a total load of $F_{x}=-3.844 \cdot 10^{6} \mathrm{~N}$ and $F_{y}=-3.844 \cdot 10^{3} \mathrm{~N}$.

MODELING IN COMSOL

This problem is modeled separately using both Solid Mechanics and Beam interfaces and the results are compared with the benchmark value. Using the Solid Mechanics interface, the problem is modeled as a "plane stress" problem considering that out-of-plane dimension is small. Poisson's ratio v is set to zero to make the boundary conditions consistent with the beam theory assumptions. The load on the right end of the beam is modeled as a uniformly distributed boundary load, corresponding to the specified total load.

In the second part of this problem, a linear buckling analysis study is carried out to compute the critical buckling load of the structure.

Results and Discussion

Due to the large compressive axial load and the slender geometry, this is a buckling problem. If you are to study the buckling and post-buckling behavior of a symmetric problem, it is necessary to perturb the symmetry somewhat. Here the small transversal load serves this purpose. An alternative approach would be to introduce an initial imperfection in the geometry.

Figure 2 below shows the final state with the $1: 1$ displacement scaling.

Figure 2: The effective von Mises stress of the deformed beam.
The horizontal and vertical displacements of the tip versus the compressive load normalized by its maximum value are shown in Figure 3.

Figure 3: Horizontal and vertical tip displacements versus normalized compressive load.
Table 1 contains a summary of some significant results. Because the reference values are given as graphs, an estimate of the error caused by reading this graph is added:

TABLE I: COMPARISON BETWEEN MODEL RESULTS AND REFERENCE VALUES.

QUANTITY	COMSOL (SOLID)	COMSOL (BEAM)	Reference
Maximum vertical displacement at the tip	-2.58	-2.58	-2.58 ± 0.02
Final vertical displacement at the tip	-1.34	-1.35	-1.36 ± 0.02
Final horizontal displacement at the tip	-5.07	-5.05	-5.04 ± 0.04

The results are in excellent agreement, especially considering the coarse mesh used.
The plot of the axial deflection reveals that an instability occurs at a parameter value close to 0.1 , corresponding to the compressive load $3.84 \cdot 10^{5} \mathrm{~N}$. It is often seen in practice that the critical load of an imperfect structure is significantly lower than that of the ideal structure.

This problem (without the small transverse load) is usually referred to as the Euler-1 case. The theoretical critical load is

$$
P_{\mathrm{c}}=\frac{\pi^{2} E I}{4 L^{2}}=\frac{\pi^{2} \cdot 2.1 \cdot 10^{11} \cdot\left(0.1^{4} / 12\right)}{4 \cdot 3.2^{2}}=4.22 \cdot 10^{5} \mathrm{~N}
$$

Figure 4 shows the first buckling mode of the beam computed from a linear buckling analysis.

Figure 4: First buckling mode of the beam.

Reference

1. A.A. Becker, Background to Finite Element Analysis of Geometric Non-linearity Benchmarks, NAFEMS, Ref: -R0065, Glasgow, 1999.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/large_deformation_beam

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 In the Select Physics tree, select Structural Mechanics>Beam (beam).
5 Click Add.
6 Click Study.
7 In the Select Study tree, select General Studies>Stationary.
8 Click Done.

GLOBAL DEFINITIONS

Define parameters for the geometric data, compressive and transverse load components as well as a parameter that you will use to gradually turn up the compressive load.

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file large_deformation_beam_parameters.txt.

By restricting the range of parameter NCL to [0, 1], it serves as a compressive load normalized by maximum compressive load.

GEOMETRY I

Rectangle I (rl)

I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 1.
4 In the Height text field, type d.

Polygon I (poll)

I In the Geometry toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

$\mathbf{x}(\mathbf{m})$	$\mathbf{y}(\mathbf{m})$
0	$5^{*} d$
l	$5^{*} d$

4 Click Build All Objects.

Form Union (fin)

I In the Model Builder window, click Form Union (fin).
2 Click Build Selected.

GLOBAL DEFINITIONS

In this example, the same material data will be referenced for Solid Mechanics and Beam interfaces, hence it can be added as a Global Material in the model. Using Material Link node, we assign the Global Material to different domains, boundaries and edges of the structure.

Material I (matl)

I In the Model Builder window, under Global Definitions right-click Materials and choose Blank Material.

2 In the Settings window for Material, click to expand the Material Properties section.
3 In the Material properties tree, select Basic Properties>Density.
4 Click Add to Material.
5 In the Material properties tree, select Basic Properties>Poisson's Ratio.
6 Click Add to Material.
7 In the Material properties tree, select Basic Properties>Young's Modulus.

8 Click Add to Material.

9 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Density	rho	7850	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic
Poisson's ratio	nu	0	I	Basic
Young's modulus	E	$2.1 \mathrm{e} 5[\mathrm{MPa}]$	Pa	Basic

MATERIALS

Material Link I (matlnkI)

In the Model Builder window, under Component I (compl) right-click Materials and choose More>Material Link.

Material Link 2 (matlnk2)

I Right-click Materials and choose More>Material Link.
2 In the Settings window for Material Link, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 4 only.
Add physics settings for the Solid Mechanics interface.

SOLID MECHANICS (SOLID)

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the 2D Approximation section.
3 From the list, choose Plane stress.
4 Locate the Thickness section. In the d text field, type d .
Fixed Constraint I
I In the Physics toolbar, click Boundaries and choose Fixed Constraint.
2 Select Boundary 1 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundary 5 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 From the Load type list, choose Total force.
5 Specify the $\mathbf{F}_{\text {tot }}$ vector as

NCL*F_Lx x
F_Ly $\quad y$

BEAM (BEAM)
I In the Model Builder window, under Component I (compl) click Beam (beam).
2 In the Settings window for Beam, locate the Boundary Selection section.
3 Click Clear Selection.

4 Select Boundary 4 only.

Cross Section Data I

I In the Model Builder window, under Component I (compl)>Beam (beam) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Definition section.
3 From the list, choose Common sections.
4 In the h_{y} text field, type d.
5 In the h_{z} text field, type d.

Fixed Constraint I

I In the Physics toolbar, click Points and choose Fixed Constraint.
2 Select Point 3 only.
Point Load I
I In the Physics toolbar, click Points and choose Point Load.
2 In the Settings window for Point Load, locate the Force section.
3 Specify the \mathbf{F}_{P} vector as

NCL*F_Lx	x
F_{-}Ly	y

4 Select Point 6 only.
Add unit point load for linear buckling analysis.
Point Load 2
I Right-click Point Load I and choose Duplicate.
2 In the Settings window for Point Load, locate the Force section.
3 Specify the \mathbf{F}_{P} vector as
$-1 \times$
$0 \quad y$

MESH I

Edge I

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose More Operations>Edge.

2 Select Boundaries 2-4 only.
Distribution I
I Right-click Edge I and choose Distribution.
2 In the Settings window for Distribution, locate the Boundary Selection section.
3 From the Selection list, choose All boundaries.
4 Select Boundary 4 only.
5 Locate the Distribution section. In the Number of elements text field, type 40.

Distribution 2

I In the Model Builder window, right-click Edge I and choose Distribution.
2 In the Settings window for Distribution, locate the Boundary Selection section.
3 From the Selection list, choose All boundaries.
4 Select Boundaries 2 and 3 only.
5 Locate the Distribution section. In the Number of elements text field, type 20.

Mapped I

I In the Model Builder window, right-click Mesh I and choose Mapped.
2 Click Build AII.

STUDY I

Step I: Stationary
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
4 Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.

5 In the Physics and variables selection tree, select Component I (comp I)>Beam (beam)> Point Load 2.

6 Click Disable.
7 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
8 Click Add.

9 In the table, enter the following settings:

Parameter name	Parameter value list
NCL (Normalized compressive load)	range $(0,0.01,1)$

IO Right-click Study I>Step I: Stationary and choose Get Initial Value for Step.

STUDY I

Solver Configurations

In the Model Builder window, expand the Study I>Solver Configurations node.
Solution I (soll)
I In the Model Builder window, expand the Study I>Solver Configurations>Solution I (soll) node, then click Stationary Solver I.

2 In the Settings window for Stationary Solver, locate the General section.
3 In the Relative tolerance text field, type 1e-4.
4 In the Model Builder window, expand the Study I>Solver Configurations> Solution I (soll)>Stationary Solver I node.

5 Right-click Stationary Solver I and choose Segregated.
6 In the Settings window for Segregated, locate the General section.
7 From the Termination technique list, choose Iterations.
8 In the Model Builder window, expand the Study I>Solver Configurations> Solution I (solI)>Stationary Solver I>Segregated I node, then click Segregated Step.

9 In the Settings window for Segregated Step, locate the General section.
10 In the Variables list, select
Displacement field (material and geometry frames) (compl.beam.uLin).
II Under Variables, click Delete.
12 Under Variables, click Delete.
I3 Click to expand the Method and Termination section. From the Termination technique list, choose Tolerance.

14 In the Model Builder window, right-click Segregated I and choose Segregated Step.
I5 In the Settings window for Segregated Step, locate the General section.
16 Under Variables, click Add.

17 In the Add dialog box, in the Variables list, choose
Rotation field (material and geometry frames) (compl.beam.thLin) and
Displacement field (material and geometry frames) (compl.beam.uLin).
18 Click OK.
19 In the Settings window for Segregated Step, locate the Method and Termination section.
20 From the Nonlinear method list, choose Automatic (Newton).
21 In the Maximum number of iterations text field, type 200.
$\mathbf{2}$ In the Tolerance factor text field, type 1.

Step I: Stationary

I In the Model Builder window, click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Results While Solving section.
3 Select the Plot check box.
4 From the Plot group list, choose Stress (beam).
5 In the Home toolbar, click Compute.

RESULTS

Line I
I In the Model Builder window, expand the Results>Stress (beam) node, then click Line I.
2 In the Settings window for Line, locate the Expression section.
3 From the Unit list, choose MPa.
4 Right-click Line I and choose Copy.
Line I
I In the Model Builder window, right-click Stress (solid) and choose Paste Line.
2 In the Settings window for Line, type Stress (solid and beam) in the Label text field.
Surface I
I In the Model Builder window, click Surface I.
2 In the Settings window for Surface, locate the Expression section.
3 From the Unit list, choose MPa.

Stress (solid and beam)

I In the Model Builder window, click Stress (solid and beam).
2 In the Settings window for Line, click to expand the Inherit Style section.
3 From the Plot list, choose Surface I.

4 Clear the Tube radius scale factor check box.
Stress (solid)
I In the Model Builder window, click Stress (solid).
2 In the Stress (solid) toolbar, click Plot.
3 Click the Zoom Extents button in the Graphics toolbar.
Add a data set to use for plotting of the results at the tip of the solid beam.

Cut Point 2D I

I In the Results toolbar, click Cut Point 2D.
2 In the Settings window for Cut Point 2D, locate the Point Data section.
3 In the \mathbf{X} text field, type 1 .
4 In the \mathbf{Y} text field, type d/2.
5 Click Plot.
6 Click the Zoom Extents button in the Graphics toolbar.

ID Plot Group 8

I In the Results toolbar, click ID Plot Group.
2 In the Settings window for ID Plot Group, type Tip displacement in the Label text field.

3 Locate the Data section. From the Dataset list, choose Cut Point 2D I.

Point Graph I

I Right-click Tip displacement and choose Point Graph.
2 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the \boldsymbol{y}-axis data section. From the menu, choose Component I>Solid Mechanics> Displacement $>$ Displacement field $-\mathbf{m}>\mathbf{u}$ - Displacement field, \mathbf{X} component.

3 Click to expand the Coloring and Style section. In the Width text field, type 3.
4 Click to expand the Legends section. Select the Show legends check box.
5 From the Legends list, choose Manual.
6 In the table, enter the following settings:

Legends
u (solid)
Point Graph 2
I In the Model Builder window, right-click Tip displacement and choose Point Graph.

2 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the \boldsymbol{y}-axis data section. From the menu, choose Component I>Solid Mechanics> Displacement $>$ Displacement field $-\mathbf{m}>\mathbf{v}$ - Displacement field, \mathbf{Y} component.
3 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.

4 In the Width text field, type 3.
5 Locate the Legends section. Select the Show legends check box.
6 From the Legends list, choose Manual.
7 In the table, enter the following settings:
Legends
v (solid)
Point Graph 3
I Right-click Tip displacement and choose Point Graph.
2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study I/Solution I (soll).
4 Locate the Selection section. Select the Activate selection toggle button.
5 Select Point 6 only.
6 Click Replace Expression in the upper-right corner of the \boldsymbol{y}-axis data section. From the menu, choose Component $\mathbf{I}>$ Beam $>$ Displacement $>$ Displacement field - m>u2 Displacement field, X component.
7 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dotted.

8 Find the Line markers subsection. From the Marker list, choose Asterisk.
9 In the Width text field, type 3.
10 Locate the Legends section. Select the Show legends check box.
II From the Legends list, choose Manual.
$\mathbf{1 2}$ In the table, enter the following settings:

Legends

u (beam)
Point Graph 4
I Right-click Point Graph 3 and choose Duplicate.

2 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the \mathbf{y}-axis data section. From the menu, choose Component I>Beam> Displacement>Displacement field - m>v2 - Displacement field, \mathbf{Y} component.

3 Locate the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Circle.

4 Locate the Legends section. In the table, enter the following settings:

Legends
v (beam)

5 In the Tip displacement toolbar, click Plot.

Tip displacement

I In the Model Builder window, click Tip displacement.
2 In the Settings window for ID Plot Group, click to expand the Title section.
3 From the Title type list, choose Manual.
4 In the Title text area, type Tip displacement components (m) vs. normalized compressive load.

5 Locate the Plot Settings section. Select the \boldsymbol{y}-axis label check box.
6 In the associated text field, type Tip displacement.
7 In the Tip displacement toolbar, click Plot.
8 Click the Zoom Extents button in the Graphics toolbar.
Evaluate the deformation of the structure.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Cut Point 2D I.
4 From the Parameter selection (NCL) list, choose Last.
5 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I>Solid Mechanics>Displacement>Displacement field - m>u Displacement field, X component.

6 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
u	m	Solid: x-disp

7 Click Evaluate.

Point Evaluation 2

I Right-click Point Evaluation I and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study I/Solution I (soll).
4 Locate the Selection section. Select the Activate selection toggle button.
5 Select Point 6 only.
6 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
u2	m	Beam: x-disp
uFinal_Ref	m	Reference value for final horizontal displacement at the tip

7 Click Table I-Point Evaluation I.

Point Evaluation 3

I In the Model Builder window, under Results>Derived Values right-click Point Evaluation I and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Expressions section.
3 In the table, enter the following settings:

Expression	Unit	Description
v	m	Solid: y-disp

4 Click New Table.

Point Evaluation 4

I In the Model Builder window, under Results>Derived Values right-click Point Evaluation 2 and choose Duplicate.

2 In the Settings window for Point Evaluation, locate the Expressions section.
3 In the table, enter the following settings:

Expression	Unit	Description
v2	m	Beam: y-disp
vFinal_Ref	m	Reference value for final vertical displacement at the tip

4 Click Table 2 - Point Evaluation 3.

Point Evaluation 5

I In the Model Builder window, under Results>Derived Values right-click Point Evaluation 3 and choose Duplicate.

2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Parameter selection (NCL) list, choose All.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
abs (v)	m	Solid: y-disp

5 Locate the Data Series Operation section. From the Operation list, choose Maximum.
6 Click New Table.

Point Evaluation 6

I In the Model Builder window, under Results>Derived Values right-click Point Evaluation 4 and choose Duplicate.

2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Parameter selection (NCL) list, choose All.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
abs (v2)	m	Beam: y-disp
abs (vMax_Ref)	m	

5 Locate the Data Series Operation section. From the Operation list, choose Maximum.
6 Click Table 3-Point Evaluation 5.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select
Preset Studies for Selected Physics Interfaces>Linear Buckling.
4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

Step I: Stationary

I In the Settings window for Stationary, locate the Physics and Variables Selection section.
2 Select the Modify model configuration for study step check box.
3 In the Physics and variables selection tree, select Component I (compl)> Solid Mechanics (solid).

4 Click Disable.
5 In the Physics and variables selection tree, select Component I (comp I)>Beam (beam)> Point Load I.

6 Click Disable.

Step 2: Linear Buckling

I In the Model Builder window, click Step 2: Linear Buckling.
2 In the Settings window for Linear Buckling, locate the Physics and Variables Selection section.

3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (compl)> Solid Mechanics (solid).

5 Click Disable.
6 In the Physics and variables selection tree, select Component I (compl)>Beam (beam)> Point Load I.

7 Click Disable.
8 In the Home toolbar, click Compute.

RESULTS

Mode Shape (beam)
Click the Zoom Extents button in the Graphics toolbar.

Point Evaluation 7

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Study 2/Solution 2 (sol2).
4 Select Point 6 only.

5 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
Fcr	N	First critical buckling load
$\mathbf{6}$ Click Evaluate.		

Vibrating Beam in Fluid Flow

Introduction

A classical flow pattern is the von Kármán vortex street that can form as fluid flows past an object. These vortices may induce vibrations in the object. This problem involves a fluidstructure interaction where the large deformation affects the flow path.

The magnitude and the frequencies of the oscillation generated by the fluid around the structure are computed and compared with the values proposed by Turek and Horn; see Ref. 1.

Model Definition

The model geometry consists of a structure inside a channel with a fluid flow as represented in Figure 1 below.

Figure 1: Model geometry including solid and fluid domains (blue and gray, respectively).
The fluid domain is a 2.5 m long and 0.41 m high channel. The structure is composed of a fixed circular domain with 0.05 m radius and centered at $(0.2,0.2)$. The second domain of the structure is a 0.35 m by 0.02 m rectangular beam made of elastic material.

The fluid enters the channel from the left with a mean velocity of $2 \mathrm{~m} / \mathrm{s}$, and the inlet velocity profile is assumed to be fully developed.

With the inlet boundary so close to the solid structure, one can expect the inlet velocity condition to affect the flow pattern. To avoid such an effect, one might need to increase
the distance between the inlet boundary and the solid structure. For the sake of comparison, the geometry in this model is kept as it is in the reference paper (Ref. l).

The Reynolds number based on the diameter of the circle is about 200.
The fluid and solid properties are represented in the table below:

TABLE I: FLUID AND SOLID MATERIAL PRO	
PARAMETER	VALUE
Fluid density	$10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Dynamic viscosity	$1 \mathrm{~Pa} \cdot \mathrm{~s}$
Young's modulus	5.6 MPa
Poisson ratio	0.4

The quantities of interest are the beam rear tip displacements and the fluid forces acting on the structure. The magnitude and frequency targets (Ref. 1) are represented in the table below:

TABLE 2: TARGET RESULTS.

PARAMETER	MAGNITUDE	FREQUENCY
x-displacement	$-2.69 \pm 2.53 \mathrm{~mm}$	10.9 Hz
y-displacement	$1.48 \pm 34.38 \mathrm{~mm}$	5.3 Hz
Drag	$457.3 \pm 22.66 \mathrm{~N}$	10.9 Hz
Lift	$2.22 \pm 149.78 \mathrm{~N}$	5.3 Hz

Results and Discussion

Figure 2 shows the velocity field and the von Mises stress in the structure on the deformed shape at different times. Note the von Kármán vortex street past the structure, which is significantly deformed and affects the flow field.

Figure 2: Velocity field in fluid and von Mises stress in structure for eight different time steps.

Figure 3 below shows the evolution of the fluid forces all along the time step. The oscillation is fully developed after $t=3.5 \mathrm{~s}$. This is due to the external perturbation added at $t=1.5 \mathrm{~s}$. Without this perturbation, the oscillation would develop after a longer time. Note that the oscillation can develop with some time shift due to nonlinearities in the model.

Figure 3: Drag and lift forces versus time.

Figure 4 shows the displacement of the tip of the beam in the x and y directions:

Figure 4: Tip displacement of the structure in the x and y directions (in green and blue respectively).

In the above figure, you can see that the magnitude of the x-displacement oscillation is about 2.5 mm around the average of -2.5 mm . The y-displacement varies around 1 mm with an oscillation magnitude of 33 mm , in good agreement with the targeted value.

The trajectory of the tip is shown in Figure 6.

Figure 5: Beam tip trajectory. The origin corresponds to the initial position.
Figure 6 below shows the frequency spectrum of the structure oscillation.

Figure 6: Frequency spectrum of the structure tip displacement.

The peaks show the main frequencies of the harmonic oscillation. For the x-displacement, the frequency is about 11 Hz , while for the y-displacement the main frequency is about 5.5 Hz , which agree well with the targeted results.

Figure 7 below shows the variations of the lift and drag forces applied to the structure:

Figure 7: Lift and drag forces (green and blue curves, respectively) after the periodic oscillations have established.

The average of the total lift force is about 2 N with an oscillation magnitude of 154 N , while the drag force average is about 456 N with an oscillation magnitude of 26 N .

Notes About the COMSOL Implementation

The default discretization for the flow equations in the fluid-structure interface is based on $\mathrm{Pl}+\mathrm{Pl}$ elements. This means that linear order elements are used for the velocity variables. Such discretization is more stable for high Reynolds number but has lower accuracy especially in the forces evaluation. In this model, use $\mathrm{P} 2+\mathrm{P} 2$ elements to increase the accuracy for the flow equations.

Reference

1. S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Institute for Applied Mathematics and Numerics, University of Dortmund.
```
Application Library path: Structural_Mechanics_Module/
Verification_Examples/oscillating_fsi
```


Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD
I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Fluid Flow>Fluid-Structure Interaction>FluidSolid Interaction.

3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Time Dependent.
6 Click Done.

GEOMETRY I

Rectangle I (rl)
I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 2.5.
4 In the Height text field, type 0.41.

Circle I (cl)

I In the Geometry toolbar, click Circle.
2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type 0.05.
4 Locate the Position section. In the \mathbf{x} text field, type 0.2.
5 In the y text field, type 0.2 .

Rectangle 2 (r 2)

I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type $0.35+0.05$.
4 In the Height text field, type 0.02.
5 Locate the Position section. From the Base list, choose Center.
6 In the \mathbf{x} text field, type $0.2+0.4 / 2$.
7 In the \boldsymbol{y} text field, type 0.2.
Rectangle 3 (r3)
I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 0.6.
4 In the Height text field, type 0.41 .
5 Locate the Position section. In the \mathbf{x} text field, type 0.2.
Difference I (difl)
I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
2 In the Settings window for Difference, type Solid in the Label text field.
3 Select the object $\mathbf{r} \mathbf{2}$ only.
4 Locate the Difference section. Find the $\mathbf{O b j e c t s}$ to subtract subsection. Select the Activate selection toggle button.
5 Select the object cl only.
6 Select the Keep input objects check box.
7 Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.

Difference 2 (dif2)

I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
2 In the Settings window for Difference, type Fluid in the Label text field.
3 Select the objects $\mathbf{r I}$ and $\mathbf{r} \mathbf{3}$ only.
4 Locate the Difference section. Find the $\mathbf{O b j e c t s}$ to subtract subsection. Select the Activate selection toggle button.
5 Select the objects cl and \mathbf{r} only.

6 Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.

Form Union (fin)

I In the Geometry toolbar, click Build All.
2 In the Model Builder window, click Form Union (fin).
3 Click Build Selected.
4 Click the Zoom Extents button in the Graphics toolbar.

DEFINITIONS

Deforming Domain I

I In the Model Builder window, under Component I (compl)>Definitions>Moving Mesh click Deforming Domain I.
2 Select Domain 2 only.
Step I (stepl)
I In the Home toolbar, click Functions and choose Global>Step.
2 In the Settings window for Step, locate the Parameters section.
3 In the Location text field, type 0.5.
4 Click to expand the Smoothing section. In the Size of transition zone text field, type 1.

Gaussian Pulse I (gpl)

I In the Home toolbar, click Functions and choose Global>Gaussian Pulse.
2 In the Settings window for Gaussian Pulse, locate the Parameters section.
3 In the Location text field, type 1.5.
4 In the Standard deviation text field, type 5e-2.

LAMINAR FLOW (SPF)

I In the Model Builder window, under Component I (compl) click Laminar Flow (spf).
2 In the Settings window for Laminar Flow, locate the Domain Selection section.
3 From the Selection list, choose Fluid.
4 Click the Show More Options button in the Model Builder toolbar.
5 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Stabilization.

6 Click OK.
7 In the Model Builder window, click Laminar Flow (spf).

8 In the Settings window for Laminar Flow, click to expand the Consistent Stabilization section.

9 Find the Navier-Stokes equations subsection. Clear the Crosswind diffusion check box.
10 Click to expand the Discretization section. From the Discretization of fluids list, choose $\mathbf{P 2 + P 2}$.

Inlet I

I In the Physics toolbar, click Boundaries and choose Inlet.
2 Select Boundary 1 only.
3 In the Settings window for Inlet, locate the Velocity section.
4 In the U_{0} text field, type $1.5 * 2[\mathrm{~m} / \mathrm{s}] * \mathrm{Y}^{*}(0.41[\mathrm{~m}]-\mathrm{Y}) /(0.41[\mathrm{~m}] / 2)^{\wedge} 2 *$ step1 (t/ 1[s]).

Outlet I

I In the Physics toolbar, click Boundaries and choose Outlet.
2 Select Boundary 14 only.

SOLID MECHANICS (SOLID)

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the Domain Selection section.
3 From the Selection list, choose Solid.

Fixed Constraint I

I In the Physics toolbar, click Boundaries and choose Fixed Constraint.
2 Select Boundaries 19 and 20 only.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 11 only.
3 In the Settings window for Point Load, locate the Force section.
4 Specify the \mathbf{F}_{P} vector as

0	x
$1[N] * g p 1(t / 1[s])$	y

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Geometric Entity Selection section.
3 From the Selection list, choose Solid.
4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit
Young's modulus	E	$5.6[\mathrm{MPa}]$	Pa
Poisson's ratio	nu	0.4	I
Density	rho	1 e 3	$\mathrm{~kg} / \mathrm{m}^{3}$

Material 2 (mat2)
I Right-click Materials and choose Blank Material.
2 In the Settings window for Material, locate the Geometric Entity Selection section.
3 From the Selection list, choose Fluid.
4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Density	rho	1000	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic
Dynamic viscosity	mu	1	$\mathrm{~Pa} \cdot \mathrm{~s}$	Basic

MESH I

Size

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose Edit Physics-Induced Sequence.

2 In the Settings window for Size, locate the Element Size section.
3 From the Predefined list, choose Coarse.
Size I
I In the Model Builder window, click Size I.
2 In the Settings window for Size, locate the Element Size section.
3 From the Predefined list, choose Normal.

Free Triangular I

I In the Model Builder window, click Free Triangular I.
2 In the Settings window for Free Triangular, locate the Domain Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domains 1-3 only.

Mapped I

I In the Model Builder window, right-click Mesh I and choose Mapped.
2 Right-click Mapped I and choose Move Up.
3 In the Settings window for Mapped, click to expand the Control Entities section.
4 Clear the Smooth across removed control entities check box.
Distribution I
I Right-click Mapped I and choose Distribution.
2 Select Boundaries 12 and 13 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 From the Distribution type list, choose Predefined.
5 In the Number of elements text field, type 40.
6 In the Element ratio text field, type 5.
7 Select the Reverse direction check box.

Boundary Layers I

I In the Model Builder window, click Boundary Layers I.
2 In the Settings window for Boundary Layers, click to expand the Corner Settings section.
3 From the Handling of sharp corners list, choose None.
4 Click to expand the Transition section. Clear the Smooth transition to interior mesh check box.

5 Click Build AlI.

You can now prepare the probe variables to display during the computation.

DEFINITIONS

Integration I (intopl)

I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, locate the Source Selection section.
3 From the Geometric entity level list, choose Boundary.

4 Select Boundaries 8-10 and 15-18 only.
Global Variable Probe I (varl)
I In the Definitions toolbar, click Probes and choose Global Variable Probe.
2 In the Settings window for Global Variable Probe, type drag in the Variable name text field.

3 Locate the Expression section. In the Expression text field, type intop1(spf.T_stressx).

4 Select the Description check box.
5 In the associated text field, type Drag.
6 Click to expand the Table and Window Settings section. Click Add Plot Window.
Global Variable Probe 2 (var2)
I Right-click Global Variable Probe I (varl) and choose Duplicate.
2 In the Settings window for Global Variable Probe, type lift in the Variable name text field.

3 Locate the Expression section. In the Expression text field, type intop1(spf.T_stressy).
4 In the Description text field, type Lift.

Domain Point Probe I

I In the Definitions toolbar, click Probes and choose Domain Point Probe.
2 In the Settings window for Domain Point Probe, locate the Point Selection section.
3 From the Frame list, choose Material.
4 In row Coordinates, set \mathbf{X} to 0.595 .
5 In row Coordinates, set \mathbf{Y} to 0.2.

Point Probe Expression I (ppbl)

I In the Model Builder window, expand the Domain Point Probe I node, then click Point Probe Expression I (ppbl).
2 In the Settings window for Point Probe Expression, type u in the Variable name text field.
3 Locate the Expression section. In the Expression text field, type u_solid.
4 From the Table and plot unit list, choose mm.
5 Click to expand the Table and Window Settings section. Click Add Plot Window.

Point Probe Expression 2 (ppb2)

I Right-click Component I (compI)>Definitions>Domain Point Probe I> Point Probe Expression I (ppbl) and choose Duplicate.

2 In the Settings window for Point Probe Expression, locate the Expression section.
3 In the Expression text field, type v_solid.
4 In the Variable name text field, type v.

STUDY I

Step I: Time Dependent

I In the Model Builder window, under Study I click Step I: Time Dependent.
2 In the Settings window for Time Dependent, locate the Study Settings section.
3 In the Times text field, type range ($0,5 \mathrm{e}-2,5$).
4 Click to expand the Results While Solving section. Select the Plot check box.
5 From the Update at list, choose Time steps taken by solver.

Solution I (soll)

I In the Study toolbar, click Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node.

Spatial mesh displacement (compl.spatial.disp)

I In the Model Builder window, expand the Study I $>$ Solver Configurations> Solution I (soll)>Dependent Variables I node, then click Spatial mesh displacement (compl.spatial.disp).

2 In the Settings window for Field, locate the Scaling section.
3 In the Scale text field, type 1e-3.
Displacement field (compl.u_solid)
I In the Model Builder window, click Displacement field (compl.u_solid).
2 In the Settings window for Field, locate the Scaling section.
3 In the Scale text field, type 1e-3.
Pressure (compl.p)
I In the Model Builder window, click Pressure (compl.p).
2 In the Settings window for Field, locate the Scaling section.
3 From the Method list, choose Manual.
4 In the Scale text field, type 1 e 3.

Velocity field (spatial frame) (compl.u_fluid)

I In the Model Builder window, click Velocity field (spatial frame) (compl.u_fluid).
2 In the Settings window for Field, locate the Scaling section.
3 From the Method list, choose Manual.
4 In the Scale text field, type 1.
5 In the Study toolbar, click Compute.

RESULTS

Velocity (spf)
The first plot group shows the fluid velocity magnitude.

Surface 2

I Right-click Velocity (spf) and choose Surface.
2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type solid.mises.
4 Locate the Coloring and Style section. From the Color table list, choose Traffic.

Arrow Surface I

Right-click Velocity (spf) and choose Arrow Surface.

Animation I

In the Velocity (spf) toolbar, click Animation and choose Player.

Probe Plot Group 5

I In the Settings window for ID Plot Group, type Lift and drag forces in the Label text field.

2 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
3 Click to expand the Title section. From the Title type list, choose Manual.
4 In the Title text area, type Lift and drag forces (N).
5 Locate the Legend section. From the Position list, choose Middle left.
6 In the Lift and drag forces toolbar, click Plot.
7 Locate the Axis section. Select the Manual axis limits check box.
8 In the x minimum text field, type 3.
9 In the \mathbf{x} maximum text field, type 5 .
10 In the y minimum text field, type -160 .
II In the y maximum text field, type 500.

12 Locate the Legend section. From the Position list, choose Upper right.
I3 In the Lift and drag forces toolbar, click Plot.

Probe Plot Group 6

I In the Model Builder window, under Results click Probe Plot Group 6.
2 In the Settings window for ID Plot Group, type Beam tip displacement in the Label text field.

3 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
4 Locate the Axis section. Select the Manual axis limits check box.
5 In the \mathbf{x} minimum text field, type 3.
6 In the \mathbf{x} maximum text field, type 5.
7 In the y minimum text field, type -40 .
8 In the y maximum text field, type 40.
9 Locate the Title section. From the Title type list, choose Manual.
10 In the Title text area, type Beam tip displacement (mm).
II In the Beam tip displacement toolbar, click Plot.
ID Plot Group 7
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Frequency spectrum in the Label text field.

3 Locate the Data section. From the Dataset list, choose Domain Point Probe I.
4 From the Time selection list, choose Interpolated.
5 In the Times (s) text field, type range (3,5e-3,5).

Point Graph I

I Right-click Frequency spectrum and choose Point Graph.
2 In the Settings window for Point Graph, locate the \mathbf{y}-Axis Data section.
3 In the Expression text field, type u_solid.
4 From the Unit list, choose mm.
5 Locate the \mathbf{x}-Axis Data section. From the Parameter list, choose Frequency spectrum.
6 Select the Frequency range check box.
7 In the Minimum text field, type 1.
8 In the Maximum text field, type 15.

Point Graph 2

I Right-click Point Graph I and choose Duplicate.
2 In the Settings window for Point Graph, locate the \mathbf{y}-Axis Data section.
3 In the Expression text field, type v_solid.
4 In the Frequency spectrum toolbar, click Plot.
ID Plot Group 8
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Beam tip trajectory in the Label text field.

Table Graph I

I Right-click Beam tip trajectory and choose Table Graph.
2 In the Settings window for Table Graph, locate the Data section.
3 From the \mathbf{x}-axis data list, choose Displacement field, X component (mm), Point: ($\mathbf{0 . 5 9 5}$, 0.2).

4 From the Plot columns list, choose Manual.
5 In the Columns list, select Displacement field, \mathbf{Y} component (mm), Point: ($\mathbf{0} \mathbf{5 9 5}, \mathbf{0 . 2}$).
6 In the Beam tip trajectory toolbar, click Plot.

Pinched Hemispherical Shell

Introduction

This example studies the deformation of a hemispherical shell, where the loads cause significant geometric nonlinearity. The maximum deflections are more than two magnitudes larger than the thickness of the shell. The problem is a standard benchmark, used for testing shell formulations in a case which contains membrane and bending action, as well as large rigid body rotation. It is described in Ref. 1.

Model Definition

Figure 1 shows the geometry and the applied loads. Due to the double symmetry, the model only includes one quarter of the hemisphere.

Figure 1: The geometry and loads.
The material is linear elastic with $E=68.25 \mathrm{MPa}$ and $v=0.3$. The radius of the hemisphere is 10 m , and the thickness of the shell is 0.04 m . The hole at the top has a radius of 3.0902 m because 18° in the meridional direction from the top has been removed. The forces all have the value 200 N before taking symmetry into account. In the model, two forces of 100 N are applied in the symmetry planes at the lower edge of the shell.

Results and Discussion

The target solution in Ref. 1 is $u=-5.952 \mathrm{~m}$ under the inward acting load and $v=3.427 \mathrm{~m}$ under the outward acting load. Both target values have an error bound of $\pm 2 \%$. The values computed in COMSOL are $u=-5.862 \mathrm{~m}$ and $v=3.407 \mathrm{~m}$. Both values
are within 2% of the target. Figure 2 shows the deformed shape of the shell together with contours for the equivalent stress.

Figure 2: von Mises stress on top surface.

The change in the displacement as the load parameter increases is shown in Figure 3. As can be seen, the nonlinear effects are strong. The incremental stiffness with respect to the y direction force increases by one order of magnitude during the loading.

Figure 3: Displacements as functions of applied load.

Notes About the COMSOL Implementation

In a highly nonlinear problem it is a good idea to use the parametric continuation solver to track the solution instead of trying to solve at the full load. Several solver settings can be tuned to improve the convergence. Due to the large difference between the bending and the membrane stiffnesses in a thin shell, a small error in the approximated displacements during the iterations can cause large residual forces. For this reason, manual control of the damping is used in the Newton method. This will often improve solution speed for problems with severe geometrical nonlinearities.

Because the model uses point loads, the gradients are steep close to the locations where the loads are applied. For this reason you modify the distribution of the elements so that finer elements are generated toward the corners of the model. From a computational point of view, this is more effective than using a uniform refinement of the mesh.

Reference

1. N.K. Prinja and R.A. Clegg, "A Review of Benchmark Problems for Geometric Nonlinear Behaviour of 3-D Beams and Shells (SUMMARY)," NAFEMS Ref: R0024, pp. F9A-F9B, 1993.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/pinched_hemispherical_shell

Modeling Instructions

From the File menu, choose New

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Shell (shell).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GEOMETRY I
Sphere I (sphl)
I In the Geometry toolbar, click Sphere.
2 In the Settings window for Sphere, locate the Size section.
3 In the Radius text field, type 10.
4 Click Build Selected.
Block I (blk I)
I In the Geometry toolbar, click Block.
2 In the Settings window for Block, locate the Size and Shape section.
3 In the Width text field, type 10.

4 In the Depth text field, type 10.
5 In the Height text field, type 10.
6 Locate the Position section. In the \mathbf{x} text field, type -5 .
7 In the y text field, type - 5 .
8 In the \mathbf{z} text field, type $10 * \cos \left(18^{*} \mathrm{pi} / 180\right)[\mathrm{m}]$.
9 Click Build Selected.
Difference I (difl)
I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
2 Select the object sphl only.
3 In the Settings window for Difference, locate the Difference section.
4 Find the Objects to subtract subsection. Select the Activate selection toggle button.
5 Select the object blkI only.
6 Click Build Selected.
Convert to Surface I (csurl)
I In the Geometry toolbar, click Conversions and choose Convert to Surface.
2 Select the object difI only.
3 In the Settings window for Convert to Surface, click Build Selected.
Delete Entities I (dell)
I In the Model Builder window, right-click Geometry I and choose Delete Entities.
2 On the object csurl, select Boundaries 1-8 only.
You can do this by first selecting all boundaries and then removing Boundary 9.
3 In the Settings window for Delete Entities, click Build Selected.
4 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, type Steel in the Label text field.

3 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit
Young's modulus	E	68.25 e 6	Pa
Poisson's ratio	nu	0.3	I
Density	rho	6850	$\mathrm{~kg} / \mathrm{m}^{3}$

Note that the density is not used for a static analysis so the value you enter has no effect on the solution.

SHELL (SHELL)

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type 0.04 .
Symmetry I
I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edges 1 and 4 only.

Prescribed Displacement/Rotation I

I In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.

2 Select Point 4 only.
It might be easier to select the correct point by using the Selection List window. To open this window, in the Home toolbar click Windows and choose Selection List. (If you are running the cross-platform desktop, you find Windows in the main menu.)
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in z direction check box.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 In the Settings window for Point Load, type Point Load, X in the Label text field.
3 Select Point 4 only.
4 Locate the Force section. Specify the \mathbf{F}_{P} vector as

$-100 *$ para	x
0	y
0	z

Point Load 2
I In the Physics toolbar, click Points and choose Point Load.
2 In the Settings window for Point Load, type Point Load, Y in the Label text field.
3 Select Point 2 only.
4 Locate the Force section. Specify the \mathbf{F}_{P} vector as

0	x
$100 *$ para	y
0	z

MESH I

Mapped I

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose More Operations>Mapped.
2 In the Settings window for Mapped, locate the Boundary Selection section.
3 From the Selection list, choose All boundaries.

Distribution I

I Right-click Mapped I and choose Distribution.
2 Select Edges 1 and 4 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 From the Distribution type list, choose Predefined.
5 In the Number of elements text field, type 16.
6 In the Element ratio text field, type 3.
7 From the Growth formula list, choose Geometric sequence.

Distribution 2

I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Edges 2 and 3 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 From the Distribution type list, choose Predefined.
5 In the Number of elements text field, type 16.
6 In the Element ratio text field, type 3.
7 Select the Symmetric distribution check box.
8 From the Growth formula list, choose Geometric sequence.
9 Click Build AlI.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
para	0	0	Solver parameter

STUDY I

Step I: Stationary
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, locate the Study Settings section.

3 Select the Include geometric nonlinearity check box.
Set up an auxiliary continuation sweep for the para parameter.
4 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
5 Click Add.
6 In the table, enter the following settings:

Parameter name	Parameter value list
para (Solver parameter)	range $(0,0.1,1)$

Solution I (soll)

I In the Study toolbar, click Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node, then click Stationary Solver I.
3 In the Settings window for Stationary Solver, locate the General section.
4 In the Relative tolerance text field, type 0.0001.
5 In the Model Builder window, expand the Study I>Solver Configurations> Solution I (solI)>Stationary Solver I node, then click Fully Coupled I.

6 In the Settings window for Fully Coupled, click to expand the Method and Termination section.

7 From the Nonlinear method list, choose Constant (Newton).
8 In the Study toolbar, click Compute.

RESULTS

Surface I

I In the Model Builder window, expand the Results>Stress (shell) node, then click Surface I.
2 In the Settings window for Surface, click to expand the Range section.
3 Select the Manual color range check box.
4 In the Maximum text field, type 5e5.
5 In the Stress (shell) toolbar, click Plot.
ID Plot Group 5
In the Home toolbar, click Add Plot Group and choose ID Plot Group.

Point Graph I

I Right-click ID Plot Group 5 and choose Point Graph.
2 Select Point 4 only.

3 In the Settings window for Point Graph, locate the \boldsymbol{y}-Axis Data section.
4 In the Expression text field, type - u.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type para*100[N].
7 Click to expand the Coloring and Style section. In the Width text field, type 3.
8 Click to expand the Legends section. Select the Show legends check box.
9 From the Legends list, choose Manual.
10 In the table, enter the following settings:

Legends

-u under x force
Point Graph 2
I Right-click Point Graph I and choose Duplicate.
2 In the Settings window for Point Graph, locate the Selection section.
3 Select the Activate selection toggle button.
4 In the list, select 4.
5 Click Remove from Selection.
6 Select Point 2 only.
7 Locate the y-Axis Data section. In the Expression text field, type v.
8 Locate the Legends section. In the table, enter the following settings:

Legends

v under y force
ID Plot Group 5
I In the Model Builder window, click ID Plot Group 5.
2 In the Settings window for ID Plot Group, locate the Plot Settings section.
3 Select the \mathbf{x}-axis label check box.
4 In the associated text field, type Force (N).
5 Select the \mathbf{y}-axis label check box.
6 In the associated text field, type Displacement under force (m).
7 Locate the Legend section. From the Position list, choose Upper left.

8 In the ID Plot Group 5 toolbar, click Plot.
Evaluate the displacements in the points where a comparison should be made with the target.

Evaluation Group I

I In the Results toolbar, click Evaluation Group.
2 In the Settings window for Evaluation Group, locate the Data section.
3 From the Parameter selection (para) list, choose Last.
4 Locate the Transformation section. Select the Transpose check box.

Point Evaluation I

I Right-click Evaluation Group I and choose Point Evaluation.
2 Select Points 2 and 4 only.

3 In the Settings window for Point Evaluation, locate the Expressions section.
4 In the table, enter the following settings:

Expression	Unit	Description
u	m	Displacement field, X component
v	m	Displacement field, Y component

5 In the Evaluation Group I toolbar, click Evaluate.

Postbuckling Analysis of a Hinged Cylindrical
 Shell

Introduction

Buckling is a phenomenon that can cause sudden failure of a structure.
A linear buckling analysis predicts the critical buckling load. Such an analysis, however, does not give any information about what happens at loads higher than the critical load. Tracing the solution after the critical load is called a postbuckling analysis.

A linear buckling analysis also often overpredicts the load-carrying capacity of the structure.

In order to accurately determine the critical buckling load or predict the postbuckling behavior, you can use the nonlinear solver and ramp up the applied load to compute the structure deformation. The buckling load can then be based on when a certain, not acceptable, deformation is reached.

Once the critical buckling load has been reached it can happen that the structure undergoes a sudden large deformation into a new stable configuration. This is known as a snap-through phenomenon. A snap-through process cannot be simulated using prescribed load in a standard nonlinear static solver because the problem becomes numerically singular. Physically speaking, it is a highly transient problem as the structure "jumps" from one state to another. For simple cases with a single point load, it is often possible to replace the point load with a prescribed displacement and then measure the reaction force instead.

For more general problems the post-buckling solution must however be tracked using more sophisticated methods, as shown in this example.

Figure 1 shows the variation of load versus the displacement for such a difficult case. It illustrates the possible computational problem by using either a load control (path A) or a displacement control (path B).

Figure 1: Load versus displacement in snap-through buckling
The shell structure in this example has a behavior similar to this.

Model Definition

The model studied here is a benchmark for a hinged cylindrical panel subjected to a point load at its center; see Ref. l.

- The radius of the cylinder is $R=2.54 \mathrm{~m}$ and all edges have a length of $2 L=0.508 \mathrm{~m}$. The angular span of the panel is thus 0.2 radians. The panel thickness is $t h=6.35 \mathrm{~mm}$.
- The straight edges are hinged.
- In the study the variation of the panel center vertical displacement with respect to the change of the applied load is of interest.

Due to the double symmetry, only one quarter of the geometry is modeled as shown in Figure 2. The blue lines show the symmetry edge conditions, while the red line shows the location of the hinged edge condition.

Figure 2: Problem description.
In general, you should be careful with using symmetry in buckling problems, because nonsymmetric solutions may exist.

Results

In Figure 3 you can see the applied load as a function of the panel center displacement. The figure shows clearly a non-unique solution for a given applied load (between - 400 N to 600 N) or a given displacement (between 14.4 mm and 17 mm).

Figure 3: Applied load versus panel center displacement.
As shown in Table l, the results agree well with the target data from Ref. 1 .
TABLE I: COMPARISON BETWEEN TARGET AND COMPUTED DATA.

Applied Load (N)	Displacement target (mm)	Displacement computed (mm)	Difference (\%)
155.1	1.846	1.818	1.52
574.2	11.904	12.05	1.23
485.1	15.501	15.56	0.38
24.9	17.008	17.028	0.12
-300.3	14.520	14.537	0.12
-381.3	16.961	16.77	1.13
-1.8	24.824	24.81	0.06
1469.4	33.388	33.34	0.14

Notes About the COMSOL Implementation

The main feature of this model is that a limit point instability occurs at the buckling load. Neither a load control, nor a point displacement control, would be able to track the jump between the stable solution paths (see Figure 1). To solve this type of problem it is important to find a proper parameter that increases monotonically.

In this example, a good such parameter is the average of the displacement in the direction of the applied force. You use a nonlocal average coupling to measure the displacement and then add a global equation to compute the appropriate point load for each prescribed parameter value.

There is no general way to determine which controlling parameter to use, so it is necessary to use some physical insight.

Reference

1. K.Y. Sze, X.H. Liua, and S.H. Lob, "Popular Benchmark Problems for Geometric Nonlinear Analysis of Shells," Finite Element in Analysis and Design, vol. 40, issue 11, pp. 1551-1569, 2004.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/postbuckling_shell

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Shell (shell).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.

6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
R	$2540[\mathrm{~mm}]$	2.54 m	Panel radius
L	$254[\mathrm{~mm}]$	0.254 m	Panel length
thic	$6.35[\mathrm{~mm}]$	0.00635 m	Panel thickness
theta	$0.1[\mathrm{rad}]$	0.1 rad	Panel section angle
E0	$3.103[\mathrm{GPa}]$	3.103 E 9 Pa	Young's modulus
nu0	0.3	0.3	Poisson's ratio
disp	0	0	Displacement parameter

GEOMETRY I

Work Plane I (wpl)

I In the Geometry toolbar, click Work Plane.
2 In the Settings window for Work Plane, locate the Plane Definition section.
3 From the Plane list, choose xz-plane.

4 Click Show Work Plane.

Work Plane I (wpl)>Line Segment I (|s I)
I In the Work Plane toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 Locate the Starting Point section. In the yw text field, type R.
6 Locate the Endpoint section. In the $\mathbf{x w}$ text field, type L and $\mathbf{y w}$ to R.
7 Click Build Selected.
8 In the Model Builder window, click Geometry I.

Revolve I (revl)

I In the Geometry toolbar, click Revolve.
2 In the Settings window for Revolve, locate the Revolution Angles section.
3 Click the Angles button.
4 In the End angle text field, type theta.
5 Locate the Revolution Axis section. Find the Direction of revolution axis subsection. In the $\mathbf{x w}$ text field, type 1.

6 In the $\mathbf{y w}$ text field, type 0.
7 Click Build Selected.

DEFINITIONS

Click the Zoom Extents button in the Graphics toolbar.
Average I (aveopl)
I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, locate the Source Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 1 only.

Integration I (intopl)

I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, locate the Source Selection section.
3 From the Geometric entity level list, choose Point.
4 Select Point 4 only.

Variables I

I In the Definitions toolbar, click Local Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit
w_center	-intop1 (w)	m

SHELL (SHELL)

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type thic.

Linear Elastic Material I

I In the Model Builder window, click Linear Elastic Material I.
2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.

3 From the E list, choose User defined. In the associated text field, type E0.
4 From the v list, choose User defined. In the associated text field, type nu0.

Symmetry I

I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edge 3 only.

Symmetry 2

I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edge 4 only.
3 In the Settings window for Symmetry, locate the Coordinate System Selection section.
4 From the Coordinate system list, choose Global coordinate system.
5 Locate the Symmetry section. From the Axis to use as symmetry plane normal list, choose I.

Pinned I

I In the Physics toolbar, click Edges and choose Pinned.
2 Select Edge 2 only.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 4 only.
Apply $1 / 4$ th of the total load because of the double symmetry used in this model.
3 In the Settings window for Point Load, locate the Force section.

4 Specify the \mathbf{F}_{P} vector as

0	x
0	y
$-P / 4$	z

5 Click the Show More Options button in the Model Builder toolbar.
6 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Equation-Based Contributions.

7 Click OK.

Global Equations I

I In the Physics toolbar, click Global and choose Global Equations.
2 In the Settings window for Global Equations, locate the Global Equations section.
3 In the table, enter the following settings:

| Name | f(u,ut,utt,t) (I) | Initial value
 $\left(\mathbf{u} _\mathbf{0}\right)(\mathbf{I})$ | Initial value
 $\left(\mathbf{u} _\mathbf{t} \mathbf{0}\right)(\mathbf{1} \mathbf{s})$ | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P | aveop1(-w)-disp | 0 | 0 | Force at shell
 center |

4 Locate the Units section. Click Select Dependent Variable Quantity.
5 In the Physical Quantity dialog box, type force in the text field.
6 Click Filter.
7 In the tree, select General>Force (N).
8 Click OK.
9 In the Settings window for Global Equations, locate the Units section.
10 Click Select Source Term Quantity.
II In the Physical Quantity dialog box, type displacement in the text field.
12 Click Filter.
I3 In the tree, select General>Displacement (m).
14 Click OK.

MESH I

Mapped I

I In the Model Builder window, under Component I (compl) right-click Mesh I and choose More Operations>Mapped.

2 Select Boundary l only.

Distribution I

I Right-click Mapped I and choose Distribution.
2 Select Edges 1 and 2 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 10.
5 Click Build Selected.

STUDY I

Step I: Stationary
Set up an auxiliary continuation sweep for the disp parameter.
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Auxiliary sweep check box.

4 Click Add.

5 In the table, enter the following settings:

Parameter name	Parameter value list
disp (Displacement parameter)	range $(0,2 e-4,1)$

6 Locate the Study Settings section. Select the Include geometric nonlinearity check box.
Sometimes it is not straightforward to guess the maximum value of the parameter used. You can then instead set a stop condition for the parametric solver based on something that is known.

Solution I (soll)

I In the Study toolbar, click Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node.
3 In the Model Builder window, expand the Study I>Solver Configurations> Solution I (solI)>Stationary Solver I node.

4 Right-click Parametric I and choose Stop Condition.
5 In the Settings window for Stop Condition, locate the Stop Expressions section.
6 Click Add.
7 In the table, enter the following settings:

Stop expression	Stop if	Active	Description
comp1.w_center>0.035	True $(>=1)$	$\sqrt{ }$	Stop expression 1

Specify that the solution is to be stored just before the stop condition is reached.
8 Locate the Output at Stop section. From the Add solution list, choose Step before stop.
9 Clear the Add warning check box.
10 In the Model Builder window, click Stationary Solver I.
II In the Settings window for Stationary Solver, click to expand the Output section.
12 Clear the Reaction forces check box.
13 Click Compute.

RESULTS

ID Plot Group 5
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Force at Shell Center in the Label text field.

3 Click to expand the Title section. From the Title type list, choose Manual.
4 In the Title text area, type Force at Shell Center.

Point Graph I

I Right-click Force at Shell Center and choose Point Graph.
2 Select Point 4 only.
3 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the \boldsymbol{y}-axis data section. From the menu, choose Component I>Shell>P Force at shell center - \mathbf{N}.

4 Locate the x-Axis Data section. From the Parameter list, choose Expression.
5 In the Expression text field, type w_center.
6 Select the Description check box.
7 In the associated text field, type Vertical displacement at shell center.

8 In the Force at Shell Center toolbar, click Plot.

Random Vibration Analysis of a Deep Beam

Introduction

This example studies forced random vibrations of a simply-supported deep beam. The beam is loaded by a distributed force with a uniform power spectral density (PSD). The output PSD are computed for the displacement and bending stress response. The computed values are compared with analytical results (NAFEMS test 5R from Ref. 1).

Model Definition

The model studied in this example consists of a simply supported beam with a square cross section. One end is pinned and has a constrained rotation along the beam axis. At the other end, the displacements in the plane of beam cross section are constrained.

GEOMETRY

- Beam length, $L=10 \mathrm{~m}$
- Beam cross section dimension $l=2 \mathrm{~m}$

With such aspect ratio of the cross section size to the beam length, shear deformations and rotational inertia effects can no longer be neglected as it is done in the Euler-Bernoulli theory. Therefore, the solution is computed using a Timoshenko beam.

MATERIAL

- Young's modulus, $E=200 \mathrm{GPa}$
- Poisson's ratio, $v=0.3$
- Mass density, $\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}$
- Rayleigh damping coefficient: $\alpha=5.36 \mathrm{~s}^{-1}, \beta=7.46 \cdot 10^{-5} \mathrm{~m} / \mathrm{s}$

The values of the damping coefficients are chosen to give a damping ratio of 2% for the first eigenmode.

CONSTRAINTS

At $\mathrm{x}=0, u=v=w=0 ;$ th $x=0$
At $\mathrm{x}=10, v=w=0$

LOAD

For a linear system, the response in the frequency domain for a single variable V to the excitation F can be written

$$
V(f)=H_{V F}(f) F
$$

where f is the frequency, and H is the complex valued transfer function. It can then be shown that the corresponding spectral densities have the relation

$$
S_{V}(f)=\left|H_{V F}(f)\right|^{2} S_{F}(f)=H^{*}{ }_{V F}(f) H_{V F}(f) S_{F}(f)
$$

where the asterisk denotes a complex conjugate. This type of relation is true not only for the degrees of freedom, but for any quantity that is linearly related to the input. This includes components of stress and (engineering) strain, but not nonlinear quantities such as equivalent or principal stresses.
In this example, a load of $F=10^{6} \mathrm{~N} / \mathrm{m}$ in the y direction is applied uniformly along the beam for the forced harmonic vibration study. For the random vibration analysis, the load is assumed to have a uniformly distributed PSD of $10^{12}(\mathrm{~N} / \mathrm{m})^{2} / \mathrm{Hz}$. Thus, one should expect that results have the property

$$
S_{V}(f)=|V|^{2}(f)
$$

That is, the PSD response is simply the square of the standard harmonic response.

Results and Discussion

The plot below shows the computed PSD of the beam vertical displacement at the mid point. Note that is also matches the squared non-random frequency response at the same point.

Figure 1: The PSD of the displacement response at the midpoint of the beam.
In Table 1, the computed results are compared with the analytical results from Ref. 1. The agreement is good.

TABLE I: COMPARISON BETWEEN ANALYTICAL AND COMPUTED RANDOM RESPONSES.

	Peak displacement PSD $\mathbf{m m}^{2} / \mathbf{H z}$	Peak stress PSD $\left(\mathbf{N} / \mathbf{m m}^{2}\right)^{2} / \mathbf{H z}$	Frequency $\mathbf{H z}$
REFERENCE	180.90	58516	42.65
COMSOL	180.89	56933	42.66

In this benchmark, a mesh consisting of only five elements is prescribed. The stress is measured at the midpoint of the beam, that is at the midpoint of the central beam element. Since the finite element approximation in the beam elements give a linear variation of the bending moment within each element, the bending moment (and thus the stress) in the central element is constant for symmetry reasons. The true midpoint value will thus be
underestimated. If six elements are used instead, there will be a node at the midpoint. The stress PSD value in that node turns out to be $60,652\left(\mathrm{~N} / \mathrm{mm}^{2}\right)^{2} / \mathrm{Hz}$.

Reference

1. J. Maguire, D.J. Dawswell, and L. Gould, "Selected Benchmarks for Forced Vibration", NAFEMS R0016, 1989.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/random_vibration_deep_beam

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Beam (beam).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select Preset Studies for Selected Physics Interfaces> Random Vibration (PSD).

6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.

3 In the table, enter the following settings:

Name	Expression	Value	Description
F	$1 \mathrm{e} 6[\mathrm{~N} / \mathrm{m}]$	IE6 N / m	Edge load
PSD	$\mathrm{F}^{\wedge} 2 / 1[\mathrm{~Hz}]$	IEI2 $\mathrm{kg}^{2} / \mathrm{s}^{3}$	Random edge load, power spectral density

GEOMETRY I

Line Segment I (|s|)

I In the Geometry toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 In the \mathbf{x} text field, type 10.
6 Click Build All Objects.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$2 e 11$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	8000	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

BEAM (BEAM)
I In the Model Builder window, under Component I (compl) click Beam (beam).
2 In the Settings window for Beam, locate the Beam Formulation section.
3 From the list, choose Timoshenko.

Cross Section Data I

I In the Model Builder window, under Component I (compl)>Beam (beam) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Definition section.
3 From the list, choose Common sections.
4 In the h_{y} text field, type 2.
5 In the h_{z} text field, type 2.

Section Orientation I

I In the Model Builder window, click Section Orientation I.
2 In the Settings window for Section Orientation, locate the Section Orientation section.
3 From the Orientation method list, choose Orientation vector.
4 Specify the V vector as

0	X
0	Y
1	Z

Linear Elastic Material I
In the Model Builder window, click Linear Elastic Material I.

Damping I

I In the Physics toolbar, click Attributes and choose Damping.
2 In the Settings window for Damping, locate the Damping Settings section.
3 In the $\alpha_{d M}$ text field, type 5.36.
4 In the $\beta_{\mathrm{d} K}$ text field, type 7.46e-5.
Prescribed Displacement/Rotation I
I In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.
2 Select Point 1 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 Select the Prescribed in y direction check box.
6 Select the Prescribed in z direction check box.
7 Locate the Prescribed Rotation section. From the list, choose Rotation.
8 Select the Free rotation around y direction check box.
9 Select the Free rotation around \mathbf{z} direction check box.

Prescribed Displacement/Rotation 2

I In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.
2 Select Point 2 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in y direction check box.
5 Select the Prescribed in z direction check box.

MESH I

Edge I

I In the Model Builder window, under Component I (compl) right-click Mesh I and choose More Operations>Edge.

2 Select Edge 1 only.
Distribution I
I Right-click Edge I and choose Distribution.
2 In the Settings window for Edge, click Build All.

DEFINITIONS

Set up an operator to evaluate variables at the beam midpoint.

General Extrusion I (genextl)

I In the Definitions toolbar, click Nonlocal Couplings and choose General Extrusion.
2 In the Settings window for General Extrusion, locate the Source Selection section.
3 From the Geometric entity level list, choose Edge.
4 Select Edge 1 only.
5 Locate the Destination Map section. In the x-expression text field, type 5.
6 In the y-expression text field, type 0.
7 In the z-expression text field, type 0.
8 Locate the Source section. From the Source frame list, choose Material (X, Y, Z).
Variables I
I In the Model Builder window, right-click Definitions and choose Variables.
2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit	Description
V	genext1 (v)	m	Displacement, y component
Sb	genext1 (beam.sb1)	$\mathrm{N} / \mathrm{m}^{2}$	Bending stress

GLOBAL DEFINITIONS
Reduced-Order Modeling
Set up a control parameter to be used as the edge load.
Global Reduced Model Inputs I
I In the Model Builder window, expand the Global Definitions>Reduced-Order Modeling node, then click Global Reduced Model Inputs I.

2 In the Settings window for Global Reduced Model Inputs, locate the Reduced Model Inputs section.

3 In the table, enter the following settings:

Control name	Expression
Fy	F

BEAM (BEAM)

Edge Load I

I In the Physics toolbar, click Edges and choose Edge Load.
2 Select Edge 1 only.
3 In the Settings window for Edge Load, locate the Force section.
4 Specify the \mathbf{F}_{L} vector as

0	X
Fy	Y
0	Z

STUDY I
Step I: Eigenfrequency
Set the search position close to the target value of the first natural frequency.
I In the Model Builder window, under Study I click Step I: Eigenfrequency.

2 In the Settings window for Eigenfrequency, locate the Study Settings section.
3 In the Search for eigenfrequencies around text field, type 40.
4 Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.

5 In the Physics and variables selection tree, select Component I (compI)>Beam (beam)> Linear Elastic Material I>Damping I.

6 Click Disable.
The eigenmode computation should be always performed for the undamped system. The damping will be used however in the consequent modal frequency response and random response analysis.

STUDY 3

Model Reduction

I In the Model Builder window, under Study 3 click Model Reduction.
2 In the Settings window for Model Reduction, locate the Model Reduction Settings section.
3 Select the Reduced model simulation check box.
The computation of the solution for Study 3 will find the eigenfrequencies and build up a modal reduced-order model (ROM) based on the computed eigenmodes.

4 In the Home toolbar, click Compute.
You can see all computed eigenfrequencies in the automatically generated evaluation group.

GLOBAL DEFINITIONS

Next, set up the input PSD for the random edge load.

Reduced-Order Modeling

I In the Model Builder window, under Global Definitions>Reduced-Order Modeling click Random Vibration I (rvibl).

2 In the Settings window for Random Vibration, locate the Power Spectrum section.
3 In the table, enter the following settings:

Control name	Power spectral density
roml.Fy	PSD

Update the study to make the input change available for the solution.

STUDY 3

I In the Study toolbar, click Update Solution.
The random response computations can be performed as postprocessing steps using the updated solution.

RESULTS

Add a plot of the PSD for the displacement responses at the midpoint. For verification, you also plot the non-random frequency response result computed using ROM.

Global Evaluation Sweep I

I In the Results toolbar, click More Derived Values and choose Other>

Global Evaluation Sweep.

Use the frequency range to resolve well the values close to the target first natural frequency.

2 In the Settings window for Global Evaluation Sweep, locate the Parameters section.
3 In the table, enter the following settings:

Parameter name	Parameter value list	
freq	range $(20,1,41)$ range $(41.5,0.01,43.5)$ range $(44,1,60)$	
	$[\mathrm{Hz}]$	

4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit
rvib1.psd $(\mathrm{V}) * 1 \mathrm{e} 6$	
abs (rom1.eval $(\mathrm{V}))^{\wedge} 2^{\star 1} \mathrm{e} 6$	

Tables

Click Evaluate.

TABLE

I Go to the Table window.
2 Click Table Graph in the window toolbar.

RESULTS

Table Graph I

I In the Model Builder window, expand the Results>Tables node, then click Results> ID Plot Group 3>Table Graph I.

2 In the Settings window for Table Graph, click to expand the Legends section.
3 Locate the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Cycle.

4 Locate the Legends section. Select the Show legends check box.
ID Plot Group 3
Indicate the target peak frequency.
I In the Model Builder window, click ID Plot Group 3.
2 In the Settings window for ID Plot Group, locate the Grid section.
3 In the Extra \mathbf{x} text field, type 42.65.
4 Locate the Legend section. From the Position list, choose Upper left.
5 In the ID Plot Group 3 toolbar, click Plot.
The actually computed peak frequency is close to $42.66(\mathrm{~Hz})$.
Finally, calculate the maximum PSD values in the computed frequency range for both the displacement and bending stress responses.

Global Evaluation Sweep 2
I In the Model Builder window, under Results>Derived Values right-click Global Evaluation Sweep I and choose Duplicate.

2 In the Settings window for Global Evaluation Sweep, locate the Parameters section.
3 In the table, click to select the cell at row number 1 and column number 2.
4 In the table, enter the following settings:

Parameter name	Parameter value list
freq	$42.66[\mathrm{~Hz}]$

5 Locate the Expressions section. In the table, enter the following settings:

| Expression | Unit |
| :--- | :--- | Description | rvib1.psd(V)*1e6 | |
| :--- | :--- |
| rvib1.psd(Sb)/1e12 | Displacement, y component, maximum PSD
 $\left[m m^{\wedge} 2 / \mathrm{Hz}\right]$ |

6 Click New Table.
Compare the results with the target values.

Scordelis-Lo Roof Shell Benchmark

Introduction

In the following example you build and solve a 3D shell model using the Shell interface. This example is a widely used benchmark model called the Scordelis-Lo roof. The computed maximum z-deformation is compared with the value given in Ref. 1 .

Model Definition

GEOMETRY

The geometry consists of a curved face as shown in Figure 1. Only one quarter is analyzed due to symmetry.

Figure 1: The Scordelis-Lo roof shell benchmark geometry.

- Roof length $2 L=50 \mathrm{~m}$
- Roof radius $R=25 \mathrm{~m}$.

MATERIAL

- Isotropic material with Young's modulus set to $E=4.32 \cdot 10^{8} \mathrm{~N} / \mathrm{m}^{2}$.
- Poisson's ratio set to $v=0.0$.

CONSTRAINTS

- The outer straight edge is free.
- The outer curved edge is constrained against translation in the y and z directions.
- The straight edge on the top of the roof has symmetry edge constraints.
- The curved inner edge also has symmetry constraints.

LOAD

A force per area unit of $-90 \mathrm{~N} / \mathrm{m}^{2}$ in the z direction is applied on the surface.

Results and Discussion

The maximum deformation in the global z direction with the default mesh settings is shown in Figure 2. The computed value is -0.303 m .

Figure 2: z-displacement with 176 triangular elements.
When changing to a mapped mesh, the more efficient quadrilateral elements are used. The result is -0.301 m as shown in Figure 3. With a very fine mesh, the value converges to 0.302 m , Figure 4. The reference solution quoted in Ref. I for the midside vertical displacement is -0.3086 m . The value -0.302 m is in fact observed in other published benchmark results treating this problem as the value that this problem converges towards.

A summary of the performance for different element types and mesh densities is given in Table 1. As can be seen the results are good even with rather coarse meshes.

Figure 3: z-displacement with 70 quadrilateral elements.

Surface: Displacement field, Z component (m)

Figure 4: z-displacement with 580 quadrilateral elements.
TABLE I: CONVERGENCE OF MIDPOINT VERTICAL DISPLACEMENT.

MESH SIZE SETTING	ELEMENT TYPE	NUMBER OF ELEMENTS	MIDPOINT DISPLACEMENT
Coarser	Triangle	64	-0.304
Coarser	Quadrilateral	24	-0.300
Normal	Triangle	176	-0.303
Normal	Quadrilateral	70	-0.301
Extra fine	Triangle	1384	-0.302
Extra fine	Quadrilateral	580	-0.302

Reference

1. R.H. MacNeal and R.L. Harder, Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Elements in Analysis and Design, 1, 1985.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/scordelis_lo_roof

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Shell (shell).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GEOMETRY I

Work Plane I (wp I)

In the Geometry toolbar, click Work Plane.
Work Plane I (wp I)>Plane Geometry
Right-click Work Plane I (wpI) and choose Show Work Plane.
Work Plane I (wpl)>Polygon I (poll)
I In the Work Plane toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

xw (m)	yw (m)
0	25
25	25

4 Right-click Polygon I (poll) and choose Build All Objects.

Work Plane I (wp I)

In the Model Builder window, click Work Plane I (wpI).

Revolve I (revl)

I In the Geometry toolbar, click Revolve.
2 In the Settings window for Revolve, locate the Revolution Angles section.
3 Click the Angles button.
4 In the Start angle text field, type 90.
5 In the End angle text field, type $90+40$.
6 Locate the Revolution Axis section. Find the Direction of revolution axis subsection. In the $\mathbf{x w}$ text field, type 1.

7 In the $\mathbf{y w}$ text field, type 0 .
8 Click Build Selected.
9 Click the Zoom Extents button in the Graphics toolbar.

Form Union (fin)

I In the Model Builder window, click Form Union (fin).
2 Click Build Selected.

SHELL (SHELL)

Thickness and Offset I

I In the Model Builder window, under Component I (compI)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type 0.25 .

Symmetry I

I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edges 3 and 4 only.

Prescribed Displacement/Rotation I

I In the Physics toolbar, click Edges and choose Prescribed Displacement/Rotation.
2 Select Edge 1 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in y direction check box.

5 Select the Prescribed in z direction check box.

Face Load I

I In the Physics toolbar, click Boundaries and choose Face Load.
2 Select Boundary 1 only.
3 In the Settings window for Face Load, locate the Force section.
4 Specify the \mathbf{F}_{A} vector as

0	x
0	y
-90	z

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	4.32 e 8	Pa	Basic
Poisson's ratio	nu	0	l	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

MESH I
First, compute the results with the default triangular mesh.

Free Triangular I

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose More Operations>Free Triangular.

2 In the Settings window for Free Triangular, locate the Boundary Selection section.
3 From the Selection list, choose All boundaries.

4 Click Build AII.

STUDY I

I In the Model Builder window, click Study I.

2 In the Settings window for Study, type Study 1: Tri Normal in the Label text field.
3 In the Home toolbar, click Compute.

RESULTS

Stress (shell)

I In the Settings window for 3D Plot Group, type Vertical displacement in the Label text field.

2 Click the Zoom Extents button in the Graphics toolbar.

Surface I

I In the Model Builder window, expand the Results>Vertical displacement node, then click Surface I.

2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Shell>Displacement> Displacement field - m>w - Displacement field, Z component.
3 Locate the Coloring and Style section. Select the Reverse color table check box.

Vertical displacement

I In the Model Builder window, click Vertical displacement.
2 In the Vertical displacement toolbar, click Plot.

Study I: Tri Normal/Solution I (soll)
I In the Model Builder window, expand the Results>Datasets node, then click Study I: Tri Normal/Solution I (soll).

2 In the Settings window for Solution, type Tri Normal in the Label text field. Switch to the more effective quadrilateral mesh elements.

MESH I

I In the Model Builder window, under Component I (compl) click Mesh I.
2 In the Settings window for Mesh, type Tri Normal in the Label text field.

MESH 2

I In the Mesh toolbar, click Add Mesh.
2 In the Settings window for Mesh, type Quad Normal in the Label text field.

Mapped I

I Right-click Quad Normal and choose More Operations>Mapped.
2 In the Settings window for Mapped, locate the Boundary Selection section.
3 From the Geometric entity level list, choose Remaining.
4 Click Build AII.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

I In the Model Builder window, click Study 2.
2 In the Settings window for Study, type Study 2: Quad Normal in the Label text field.
3 Locate the Study Settings section. Clear the Generate default plots check box.
4 In the Home toolbar, click Compute.

RESULTS

Vertical displacement

I In the Model Builder window, under Results click Vertical displacement.

2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose Study 2: Quad Normal/Solution 2 (sol2).
4 In the Vertical displacement toolbar, click Plot.
Surface: Displacement field, Z component (m)

Study 2: Quad Normal/Solution 2 (sol2)
I In the Model Builder window, under Results>Datasets click Study 2: Quad Normal/ Solution 2 (sol2).
2 In the Settings window for Solution, type Quad Normal in the Label text field. Examine a well converged result with a fine quadrilateral mesh.

QUAD NORMAL

In the Model Builder window, under Component I (compl)>Meshes right-click Quad Normal and choose Duplicate.

QUAD NORMAL I

In the Settings window for Mesh, type Quad Extra fine in the Label text field.

Size

I In the Model Builder window, expand the Component I (compl)>Meshes>Quad Extra fine node, then click Size.
2 In the Settings window for Size, locate the Element Size section.

3 From the Predefined list, choose Extra fine.
4 Click Build AII.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 3
I In the Model Builder window, click Study 3.
2 In the Settings window for Study, type Study 3: Quad Extra finel in the Label text field.

3 Locate the Study Settings section. Clear the Generate default plots check box.
4 In the Home toolbar, click Compute.

RESULTS

Vertical displacement

I In the Model Builder window, under Results click Vertical displacement.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose Study 3: Quad Extra finel/Solution 3 (sol3).

4 In the Vertical displacement toolbar, click Plot.
Surface: Displacement field, Z component (m)

Study 3: Quad Extra finel/Solution 3 (sol3)
I In the Model Builder window, under Results>Datasets click Study 3: Quad Extra finel/ Solution 3 (sol3).

2 In the Settings window for Solution, type Quad Extra fine in the Label text field. Examine a well converged result with triangles.

TRI NORMAL

In the Model Builder window, under Component I (compl)>Meshes right-click Tri Normal and choose Duplicate.

TRI NORMAL I

In the Settings window for Mesh, type Tri Extra Fine in the Label text field.

Size

I In the Model Builder window, expand the Component I (compl)>Meshes>Tri Extra Fine node, then click Size.

2 In the Settings window for Size, locate the Element Size section.
3 From the Predefined list, choose Extra fine.
4 Click Build AII.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 4

I In the Model Builder window, click Study 4.
2 In the Settings window for Study, type Study 4: Tri Extra fine in the Label text field.
3 Locate the Study Settings section. Clear the Generate default plots check box.
4 In the Home toolbar, click Compute.

RESULTS

Vertical displacement

I In the Model Builder window, under Results click Vertical displacement.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose Study 4: Tri Extra fine/Solution 4 (sol4).

4 In the Vertical displacement toolbar, click Plot.
Surface: Displacement field, Z component (m)

Study 4: Tri Extra fine/Solution 4 (sol4)
I In the Model Builder window, under Results>Datasets click Study 4: Tri Extra fine/ Solution 4 (sol4).

2 In the Settings window for Solution, type Tri Extra fine in the Label text field.
Investigate how well the elements perform with a very coarse mesh.

TRI NORMAL

In the Model Builder window, under Component I (compl)>Meshes right-click Tri Normal and choose Duplicate.

TRI NORMAL I

In the Settings window for Mesh, type Tri Coarser in the Label text field.

Size

I In the Model Builder window, expand the Component I (compl)>Meshes>Tri Coarser node, then click Size.

2 In the Settings window for Size, locate the Element Size section.
3 From the Predefined list, choose Coarser.
4 Click Build AII.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 5

I In the Model Builder window, click Study 5.
2 In the Settings window for Study, type Study 5: Tri Coarser in the Label text field.
3 Locate the Study Settings section. Clear the Generate default plots check box.
4 In the Home toolbar, click Compute.

RESULTS

Vertical displacement

I In the Model Builder window, under Results click Vertical displacement.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose Study 5: Tri Coarser/Solution 5 (sol5).

4 In the Vertical displacement toolbar, click Plot.
Surface: Displacement field, Z component (m)

Study 5: Tri Coarser/Solution 5 (sol5)
I In the Model Builder window, under Results>Datasets click Study 5: Tri Coarser/ Solution 5 (sol5).

2 In the Settings window for Solution, type Tri Coarser in the Label text field.

QUAD NORMAL

In the Model Builder window, under Component I (comp I)>Meshes right-click Quad Normal and choose Duplicate.

QUAD NORMAL I

In the Settings window for Mesh, type Quad Coarser in the Label text field.

Size

I In the Model Builder window, expand the Component I (compl)>Meshes>Quad Coarser node, then click Size.

2 In the Settings window for Size, locate the Element Size section.
3 From the Predefined list, choose Coarser.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 6

I In the Model Builder window, click Study 6.
2 In the Settings window for Study, type Study 6: Quad Coarser in the Label text field.
3 Locate the Study Settings section. Clear the Generate default plots check box.
4 In the Home toolbar, click Compute.

RESULTS

Vertical displacement

I In the Model Builder window, under Results click Vertical displacement.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose Study 6: Quad Coarser/Solution 6 (sol6).

4 In the Vertical displacement toolbar, click Plot.
Surface: Displacement field, Z component (m)

Study 6: Quad Coarser/Solution 6 (sol6)

I In the Model Builder window, under Results>Datasets click Study 6: Quad Coarser/ Solution 6 (sol6).

2 In the Settings window for Solution, type Quad Coarser in the Label text field.
The following section compares the maximum deformation of midpoint in vertical direction for different element types and mesh densities.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 Select Point 3 only.
3 In the Settings window for Point Evaluation, locate the Expressions section.
4 In the table, enter the following settings:

Expression	Unit	Description
w	m	Midpoint displacement, Tri Normal

5 Click Evaluate.

Point Evaluation 2

I Right-click Point Evaluation I and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Quad Normal (sol2).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
w	m	Midpoint displacement, Quad Normal

5 Click Table I-Point Evaluation I.

Point Evaluation 3

I Right-click Point Evaluation 2 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Quad Extra fine (sol3).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
w	m	Midpoint displacement, Quad Extra fine

5 Click Table I-Point Evaluation I.

Point Evaluation 4

I Right-click Point Evaluation 3 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Tri Extra fine (sol4).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
w	m	Midpoint displacement, Tri Extra fine

5 Click Table I-Point Evaluation I.

Point Evaluation 5

I Right-click Point Evaluation 4 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Tri Coarser (sol5).

4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
w	m	Midpoint displacement, Tri Coarser

5 Click Table I-Point Evaluation I.
Point Evaluation 6
I Right-click Point Evaluation 5 and choose Duplicate.
2 In the Settings window for Point Evaluation, locate the Data section.
3 From the Dataset list, choose Quad Coarser (sol6).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
w	m	Midpoint displacement, Quad Coarser

5 Click Table I-Point Evaluation I.

Single Edge Crack

Introduction

This example deals with the stability of a plate with an edge crack that is subjected to a tensile load. To analyze the stability of existing cracks, you can apply the principles of fracture mechanics.

A common parameter in fracture mechanics, the so-called stress intensity factor K_{I}, provides a means to predict if a specific crack causes the plate to fracture. When this calculated value becomes equal to the critical fracture toughness of the material, K_{Ic} (a material property), then usually catastrophic fracture occurs.

Determining the stress intensity factor directly from the local state at the crack tip is often problematic, since the stresses are singular there. Because of this, more indirect energy based methods are attractive. In this example, K_{I} is computed using the J-integral and from the energy release rate.

In addition, the crack growth rate and number of cycles needed to propagate the crack a certain distance are computed.

Model Definition

A plate with a width of 1.5 m and height of 4.5 m has a single horizontal edge-crack of length $a=0.6 \mathrm{~m}$ at the middle of the left vertical edge, see Figure l. An external load is pulling the plate such that the top and bottom edges experience tensile stress, σ, of 20 MPa .

The analysis is made using a number of crack lengths ranging from 0.5 m to 0.7 m , so that the influence of the crack length can be studied.

Because of the symmetry, only half of the plate is modeled. Additional domains are created in the half plate rectangle to create a path for integration contours for the J-integral. There are three paths for computing the J-integral:

I The external boundaries, excluding the crack surface.
2 A path with three straight lines, formed by adding an extra rectangle.
3 A semicircular path, formed by adding a circle to the geometry.

Figure 1: Plate geometry.
You apply a tensile load to the upper horizontal edge, while the lower horizontal edge is constrained in the y direction from the crack tip to the right vertical boundary using a symmetry condition. One point is constrained in the horizontal direction in order to suppress rigid body motions.

MATERIAL MODEL

The same material properties are representative for steel.

TABLE I: MATERIAL DATA.

QUANTITY	NAME	EXPRESSION
Young's modulus	E	$206 \cdot 10^{9} \mathrm{~Pa}$
Poisson's ratio	V	0.3
Coefficient in Paris' law	A	$1.4 \cdot 10^{-11}\left(\mathrm{~K}_{\mathrm{I}}\right.$ unit system: $\left.\mathrm{MN} / \mathrm{m}^{3 / 2}\right)$
Exponent in Paris' law	m	3.1

the J-INTEGRAL

In this model, you determine the stress intensity factor K_{I} using the so-called J-integral.

The J-integral is a two-dimensional path independent line integral along a counterclockwise contour, Γ, surrounding the crack tip. The J-integral is defined as

$$
J=\int_{\Gamma} W d y-T_{i} \frac{\partial u_{i}}{\partial x} d s=\int_{\Gamma}\left(W n_{x}-T_{i} \frac{\partial u_{i}}{\partial x}\right) d s
$$

where W is the strain energy density

$$
W=\frac{1}{2}\left(\sigma_{x} \cdot \varepsilon_{x}+\sigma_{y} \cdot \varepsilon_{y}+\sigma_{x y} \cdot 2 \cdot \varepsilon_{x y}\right)
$$

and \mathbf{T} is the traction vector defined as

$$
\mathbf{T}=\left[\begin{array}{l}
\sigma_{x} \cdot n_{x}+\sigma_{x y} \cdot n_{y} \\
\sigma_{x y} \cdot n_{x}+\sigma_{y} \cdot n_{y}
\end{array}\right]
$$

$\sigma_{i j}$ denotes the stress components, $\varepsilon_{i j}$ the strain components, and n_{i} the normal vector components.

The J-integral has the following relation to the stress intensity factor for a plane stress case and a linear elastic material:

$$
\begin{equation*}
J=\frac{K_{I}^{2}}{E} \tag{1}
\end{equation*}
$$

where E is Young's modulus.

ENERGY RELEASE RATE

For a linear elastic material it is actually possible to compute the value of the J-integral without using the path integrals. The reason is that its value equals the value of the energy release rate, G,

$$
\begin{equation*}
G=-\frac{1}{t} \frac{\partial U}{\partial a} \tag{2}
\end{equation*}
$$

Here U is the potential energy, a is the crack length, and t is the thickness. By computing the potential energy for two slightly different crack lengths, G can be estimated as

$$
\begin{equation*}
G=-\frac{1}{t} \frac{\Delta U}{\Delta a} \tag{3}
\end{equation*}
$$

The potential energy of an elastic body is

$$
U=\frac{1}{2} \int_{\Omega} \sigma: \varepsilon d V-\int_{\partial \Omega} \mathbf{T} \cdot \mathbf{u} d S
$$

The first term is the strain energy in the volume, and the second term is the potential of the prescribed tractions on the boundary. Because of the linearity,

$$
\int_{\Omega} \sigma: \varepsilon d V=\int_{\partial \Omega} \mathbf{T} \cdot \mathbf{u} d S
$$

Thus, it is possible to compute the potential energy using either of these terms independently.

$$
U=-\frac{1}{2} \int_{\Omega} \sigma: \varepsilon d V=-\frac{1}{2} \int_{\partial \Omega} \mathbf{T} \cdot \mathbf{u} d S
$$

The total strain energy density exists as a built-in variable, making the first expression attractive for determining G.

CRACK PROPAGATION

When subjected to a periodic load, the crack growth rate (in meters per load cycle) can be expressed by Paris' law:

$$
\begin{equation*}
\frac{d a}{d N}=A\left(\Delta K_{I}\right)^{m} \tag{4}
\end{equation*}
$$

Here A and m are material parameters and ΔK_{I} is the range of the stress intensity factor. It is assumed that the load varies between zero and 20 MPa , so that ΔK_{I} equals the computed K_{I}.

Results

Based on Ref. 1 an analytical solution for the stress intensity factor is

$$
K_{\mathrm{Ia}}=\sigma \cdot \sqrt{\pi \cdot a} \cdot \mathrm{ccf}
$$

where $\sigma=20 \mathrm{MPa}$ (edge stress), $a=0.6 \mathrm{~m}$ (crack length), and $\mathrm{ccf}=2.1$ (configuration correction factor). This correction factor is calculated with an polynomial equation from Ref. 1. The above values gives the stress intensity factor $K_{\mathrm{Ia}}=57.7 \mathrm{MN} / \mathrm{m}^{3 / 2}$.

The calculated stress intensity factors for the three different contours are

CONTOUR	STRESS INTENSITY FACTOR
I	$57.8 \mathrm{MPa} \cdot \mathrm{m}^{\mathrm{I} / 2}$
2	$57.7 \mathrm{MPa} \cdot \mathrm{m}^{\mathrm{I} / 2}$
3	$57.7 \mathrm{MPa} \cdot \mathrm{m}^{\mathrm{I} / 2}$

It is clear from these results that the values for the stress intensity factor in the COMSOL Multiphysics model are in good agreement with the reference value for all contours.

Figure 2 shows the stress singularity at the crack tip.

Figure 2: von Mises stresses and the deformed shape of the plate when the crack length is 0.6 m . The displacement is exaggerated to illustrate the deformation under the applied load.

The three different ways of computing the energy release rate, and thus K_{I}, are compared in Figure 3. As can be seen, all three methods give essentially the same values. You can use the most convenient approach when you need to compute a stress intensity factor.

Figure 3: J-integral compared with energy release rates computed using numerical differentiation.

Finally, the crack growth speed can be investigated. In Figure 4, the crack growth speed is shown as function of the crack length. The dependence is quite strong: an increase in crack length from 0.5 m to $0.7 \mathrm{~m}(40 \%)$ increases the crack growth rate by a factor of 5 . According to the constants used in Paris' law, the crack growth rate is proportional to the stress intensity factor raised to the power of 3.1. As can be seen from the previous results, the stress intensity factor increases strongly with the crack length, and this combination results in the increase in crack growth rate.

In practice, Paris' law may not be applicable when K_{I} approaches the critical value $K_{\text {Ic }}$.

Figure 4: Crack propagation rate as function of the crack length.

Notes about the COMSOL Implementation

In this analysis you compute the J-integral for three different contours traversing three different regions around the crack tip. To calculate the J-integral, you define integration operators for each contour. You then use these operators when setting up global expressions for the calculation of the stress intensity factors for the contours. Finally, you can compute the stress intensity factor from the J-integral value, according to Equation 1.

Note that the boundaries along the crack are not included in the J-integral because they do not give any contribution to the J-integral. This is due to the following facts: for an ideal crack, $d y$ is zero along the crack faces, and all traction components are also zero ($T_{i}=0$) as the crack faces are not loaded.

When calculating the J-integral, the contour normals must point outward of the region which the contour encloses. To make sure that this is the case, the built-in normal vector is replaced by a local variable which is reversed when needed. The criterion is based on the sign of the scalar product between the normal to the contour, \mathbf{n}, and the vector from the
crack tip to the current point on the contour, \mathbf{r}. If \mathbf{n} is oriented inward, then this scalar product is negative, and the normal used in the J-integral evaluation must be reversed.

When computing the energy release rates, the derivative of the potential energy is computed using a difference approximation. In order to access different solutions in a single expression, the withsol () operator is used.

Reference

1. A-R. Ragab and S.E. Bayoumi, Engineering Solid Mechanics, CRC Press, 1998.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/single_edge_crack

Modeling Instructions

From the File menu, choose New

NE W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.

4 Browse to the model's Application Libraries folder and double-click the file single_edge_crack_parameters.txt.

GEOMETRY I

Rectangle I (rl)
I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type Wp.
4 In the Height text field, type Hp.
Add the integration paths, one rectangular and one circular.

Rectangle 2 (r2)

I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Height text field, type 0.8.
4 Locate the Position section. In the \mathbf{x} text field, type $\max (X a-0.5[m], 0.05[m])$.
Circle I (cl)
I In the Geometry toolbar, click Circle.
2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type 0.3.
4 In the Sector angle text field, type 180.
5 Locate the Position section. In the \mathbf{x} text field, type Xa.
6 Click Build All Objects.
Add a point at the crack tip.

Point I (ptl)

I In the Geometry toolbar, click Point.
2 In the Settings window for Point, locate the Point section.
3 In the \mathbf{x} text field, type Xa.

Form Union (fin)

I In the Model Builder window, click Form Union (fin).
2 In the Settings window for Form Union/Assembly, click Build Selected.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, type Steel in the Label text field.
3 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	E0	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	7850	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

SOLID MECHANICS (SOLID)
I In the Model Builder window, under Component I (compI) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the 2D Approximation section.
3 From the list, choose Plane stress.
4 Locate the Thickness section. In the d text field, type Th.

Symmetry I

I In the Physics toolbar, click Boundaries and choose Symmetry.
2 Select Boundaries 8, 9, and 11 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundary 3 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 Specify the \mathbf{F}_{A} vector as
$0 \quad x$
Q0 y
Prescribed Displacement I
I In the Physics toolbar, click Points and choose Prescribed Displacement.
Suppress rigid body motion.
2 Select Point 11 only.

3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
Add integration operators for the path integrals.

DEFINITIONS

Integration I (intopl)

I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, type J-integral path 1 in the Label text field.
3 In the Operator name text field, type Jpath1.
4 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.
5 Select Boundaries 1, 3, and 12 only.

Integration 2 (intop2)

I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, type J-integral path 2 in the Label text field.
3 In the Operator name text field, type Jpath2.
4 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

5 Select Boundaries 4, 6, and 10 only.
Integration 3 (intop3)
I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, type J-integral path 3 in the Label text field.
3 In the Operator name text field, type Jpath3.
4 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

5 Select Boundaries 13 and 14 only.
Integration 4 (intop4)
I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, type Loaded edge integration in the Label text field.

3 In the Operator name text field, type LoadEdgeInt.

4 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

5 Select Boundary 3 only.

Variables I

I In the Definitions toolbar, click Local Variables.
2 In the Settings window for Variables, locate the Variables section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file single_edge_crack_variables.txt.

Use a fine mesh close to the crack tip where the stress gradients are large.

MESH I

Free Triangular I

In the Model Builder window, under Component I (compl) right-click Mesh I and choose Free Triangular.

Size I
I In the Model Builder window, right-click Free Triangular I and choose Size.
2 In the Settings window for Size, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domain 3 only.
5 Locate the Element Size section. From the Predefined list, choose Extremely fine.
Size
I In the Model Builder window, click Size.
2 In the Settings window for Size, locate the Element Size section.
3 From the Predefined list, choose Fine.

4 Click Build AlI.

Set up a parametric sweep over the crack length.

STUDY I

Parametric Sweep

I In the Study toolbar, click Parametric Sweep.
2 In the Settings window for Parametric Sweep, locate the Study Settings section.

3 Click Add.

4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
$\mathrm{Xa}($ Crack length $)$	range $(0.5, \mathrm{da}, 0.7)$	m

5 In the Study toolbar, click Compute.

RESULTS

Stress (solid)
I In the Settings window for 2D Plot Group, locate the Data section.
2 From the Parameter value ($\mathbf{X a}(\mathbf{m})$) list, choose $\mathbf{0 . 6}$.

Surface I

I In the Model Builder window, expand the Stress (solid) node, then click Surface I.
2 In the Settings window for Surface, locate the Expression section.
3 From the Unit list, choose MPa.
4 Click to expand the Range section. Select the Manual color range check box.
5 In the Minimum text field, type 0.
6 In the Maximum text field, type 140.
7 In the Stress (solid) toolbar, click Plot.
8 Click the Zoom Extents button in the Graphics toolbar.

Global Evaluation I

I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, type Stress intensity factors in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I/ Parametric Solutions I (sol2).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit
KI_1	
KI_2	Strescription
KI_3	

5 Click Evaluate.

TABLE

I Go to the Table window.
Compare J-integral by with an energy release rate based on numerical differentiation of the strain energy density with respect to the crack length.

RESULTS

ID Plot Group 3

I In the Results toolbar, click ID Plot Group.
2 In the Settings window for ID Plot Group, type J-integral and G in the Label text field.
3 Locate the Data section. From the Dataset list, choose Study I/ Parametric Solutions I (sol2).

4 From the Parameter selection (Xa) list, choose Manual.
5 In the Parameter indices (I-2I) text field, type range (2,20).

Global I

I Right-click J-integral and G and choose Global.
2 In the Settings window for Global, locate the \boldsymbol{y}-Axis Data section.
3 In the table, enter the following settings:

Expression	Unit	Description
J_1	$\mathrm{J} / \mathrm{m}^{\wedge} 2$	J -integral, contour 1

4 Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Cycle.

5 In the Width text field, type 2.
6 Find the Line markers subsection. From the Marker list, choose Cycle.

J-integral and G

I In the Model Builder window, click J-integral and G.

2 In the Settings window for ID Plot Group, locate the Plot Settings section.
3 Select the \mathbf{x}-axis label check box.
4 In the associated text field, type Crack length (m).
5 Select the \mathbf{y}-axis label check box.
6 In the associated text field, type Energy release rate ($\mathrm{J} / \mathrm{m}^{\wedge} 2$).
7 Locate the Legend section. From the Position list, choose Lower right.
8 In the J-integral and G toolbar, click Plot.

ID Plot Group 4

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Crack growth rate in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I/ Parametric Solutions I (sol2).

Global I
I Right-click Crack growth rate and choose Global.
2 In the Settings window for Global, locate the \mathbf{y}-Axis Data section.
3 In the table, enter the following settings:

Expression	Unit	Description
dadN	1	Crack growth rate (m/cycle)

4 Locate the Coloring and Style section. In the Width text field, type 2.

Crack growth rate

I In the Model Builder window, click Crack growth rate.
2 In the Settings window for ID Plot Group, click to expand the Title section.
3 From the Title type list, choose None.
4 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
5 In the associated text field, type Crack length (m).
6 Select the \mathbf{y}-axis label check box.
7 In the associated text field, type Crack growth rate (m/cycle).
8 Locate the Legend section. Clear the Show legends check box.
9 In the Crack growth rate toolbar, click Plot.
Compute the total number of cycles needed for driving the crack from 0.5 m to 0.7 m .

Global Evaluation 2

I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, type Number of cycles in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I/ Parametric Solutions I (sol2).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
$1 /$ dadN	1	

5 Locate the Data Series Operation section. From the Operation list, choose Integral.
6 Click Evaluate.

Sliding Wedge

This model is licensed under the COMSOL Software License Agreement 5.5. All trademarks are the property of their respective owners. See www.comsol.com/trademarks.

Introduction

This is a benchmark model for contact and friction described in the NAFEMS publication in Ref. 1. An analytical solution exists, and this example includes a comparison of the COMSOL Multiphysics solution against the analytical solution.

Model Definition

A contactor wedge under the gravity load G is forced to slide due to a boundary load, F, over a target wedge surface, both infinitely thick (see Figure 1). Horizontal linear springs are also connected between the left vertical boundary of the contactor and the ground. The total spring stiffness is K.

This is a large sliding problem including contact pressure and friction forces. A boundary contact pair is created and the contact functionality in the Solid Mechanics interface is used to solve the contact problem. Both the penalty method and the augmented Lagrangian method are used, and friction is modeled with the Coulomb friction model.

Figure 1: Sliding wedge with linear springs, a boundary load, and a gravity load.
The aim of this benchmark is to calculate the horizontal sliding distance and compare it with an elementary statics calculation. Three cases using different friction coefficients ($\mu=0 ; 0.1 ; 0.2$) are analyzed.
For each friction coefficient, a specific total spring stiffness K is used ($K=1194 \mathrm{~N} / \mathrm{m}$; 882 N / m and $563.9 \mathrm{~N} / \mathrm{m}$ respectively).

The horizontal applied force $F=1500 \mathrm{~N}$, the total vertical gravity load $G=3058 \mathrm{~N}$, the wedge angle is $\tan \theta=0.1$.

For all study cases, the horizontal sliding distance is expected to be 1 m .

The mesh is shown in Figure 2.

Figure 2: Quadrilateral elements are used to mesh the geometry.
The total number of elements in this model is 1000 and the number of degrees of freedom is 6484 for the displacement field.

Results and Discussion

The horizontal displacement computed for all friction cases agree very well with the reference data, see Ref. 1. For all cases, the difference is lower than 0.1%. Furthermore, both contact methods available in the Structural Mechanics Module converge to the same results. However, for this type of large sliding problem, the convergence and stability of the augmented Lagrangian method is superior to the penalty method.

Figure 3 below shows the result for the case $\mu=0.2, K=563.9 \mathrm{~N} / \mathrm{m}$, and Figure 4 show the contact pressure and friction forces for the same case. Both figures shows the results obtained with the penalty method..

Figure 3: A surface plot of the x-displacement of the contactor wedge.

Figure 4: Contact pressure and friction forces acting on the contactor wedge.

Notes About the COMSOL Implementation

The initial unloaded state of the model is unstable and cause difficulties for the solver to find an initial solution. To avoid this issue, the first parameter step is set to 0.001 . For this parameter value, a small amount of friction forces are present that stabilize the model.

The penalty method is not ideal for the type of large sliding problem with friction modeled in this example. While it in the limit will converge to the correct solution, the problem is stiff and ill-conditioned, meaning that small changes in the input can cause large changes to the results or even lead to no solution being found. In this example, the default solver suggestion does not give a stable solution, and the solver settings are modified to obtain a correct solution. Even with the modified settings, a warning from the linear solver gives an indication that the problem is ill-conditioned.

Reference

1. Feng Q., NAFEMS Benchmark Tests for Finite Element Modelling of Contact, Gapping and Sliding. NAFEMS Ref. R0081, UK, 2001.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/sliding_wedge

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
G	$3058[\mathrm{~N}]$	3058 N	Gravity load
F	$1500[\mathrm{~N}]$	I500 N	Applied force
K	$0[\mathrm{~N} / \mathrm{m}]$	$0 \mathrm{~N} / \mathrm{m}$	Spring stiffness
mu	0	0	Friction coefficient
para	0	0	Computation parameter

GEOMETRY I
Polygon I (poll)
I In the Geometry toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

$\mathbf{x (m)}$	$\mathbf{y (m)}$
0	0
6	0
6	1.3
0	0.7

4 Click Build All Objects.

Rectangle I (rl)
I In the Geometry toolbar, click Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 4.
4 In the Height text field, type 1.2.
5 Locate the Position section. In the \mathbf{x} text field, type 1.
6 In the y text field, type 0.8 .

Copy I (copyI)

I In the Geometry toolbar, click Transforms and choose Copy.
2 Select the object poll only.
3 In the Settings window for Copy, click Build Selected.
Difference I (difl)
I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
2 Select the object $\mathbf{r l}$ only.
3 In the Settings window for Difference, locate the Difference section.
4 Find the Objects to subtract subsection. Select the Activate selection toggle button.
5 Select the object copyI only.
6 Click Build Selected.

Form Union (fin)

I In the Model Builder window, under Component I (compl)>Geometry I click Form Union (fin).

2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
3 From the Action list, choose Form an assembly.
4 From the Pair type list, choose Contact pair.
5 Click Build Selected.
6 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$206[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	$6000\left[\mathrm{~kg} / \mathrm{m}^{\wedge} 3\right]$	$\mathrm{kg} / \mathrm{m}^{3}$	Basic

SOLID MECHANICS (SOLID)

Body Load I

I In the Model Builder window, under Component I (compl) right-click Solid Mechanics (solid) and choose Volume Forces>Body Load.

2 Select Domain 2 only.
3 In the Settings window for Body Load, locate the Force section.
4 From the Load type list, choose Total force.
5 Specify the $\mathbf{F}_{\text {tot }}$ vector as

0	x
-G*para	y

Contact I

I In the Physics toolbar, in the Boundary section, click Pairs and choose Contact.
2 In the Settings window for Contact, locate the Pair Selection section.
3 Under Pairs, click Add.
4 In the Add dialog box, select Contact Pair I (apl) in the Pairs list.
5 Click OK.

Friction I

I In the Physics toolbar, click Attributes and choose Friction.
2 In the Settings window for Friction, locate the Friction Parameters section.
3 In the μ text field, type mu.
4 Locate the Initial Value section. From the Previous contact state list, choose In contact.

Spring Foundation I

I In the Physics toolbar, click Boundaries and choose Spring Foundation.
2 Select Boundary 5 only.
3 In the Settings window for Spring Foundation, locate the Spring section.
4 From the Spring type list, choose Total spring constant.
5 From the list, choose Diagonal.
6 In the $\mathbf{k}_{\text {tot }}$ table, enter the following settings:

K	0
0	0

8 | SLIDing WEDGE

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundary 5 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 From the Load type list, choose Total force.
5 Specify the $\mathbf{F}_{\text {tot }}$ vector as

F*para	x
0	y

Fixed Constraint I

I In the Physics toolbar, click Boundaries and choose Fixed Constraint.
2 Select Boundary 2 only.

MESH I

Mapped I

In the Model Builder window, under Component I (compl) right-click Mesh I and choose Mapped.

Distribution I
I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundaries 1 and 5 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 10.

Distribution 2

I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundary 2 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 60.
Distribution 3
I Right-click Mapped I and choose Distribution.
2 Select Boundary 7 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 40.

5 Click Build AlI.

STUDY I

Parametric Sweep

I In the Study toolbar, click Parametric Sweep.
2 In the Settings window for Parametric Sweep, locate the Study Settings section.

3 Click Add.

4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
mu (Friction coefficient)	00.10 .2	

5 Click Add.
6 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
K (Spring stiffness)	1194882563.9	$\mathrm{~N} / \mathrm{m}$

Step I: Stationary
Set up an auxiliary continuation sweep for the para parameter.
I In the Model Builder window, click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Auxiliary sweep check box.

4 Click Add.

5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
para (Computation parameter)	$1 \mathrm{e}-3 \quad 1$	

Set a stricter tolerance and tune the parameter stepping of the auxiliary sweep to improve the convergence of the model. The convergence is also improved by changing the nonlinear solver to Constant Newton.

Solution I (soll)
I In the Study toolbar, click Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node, then click Stationary Solver I.

3 In the Settings window for Stationary Solver, locate the General section.
4 In the Relative tolerance text field, type 1e-6.
5 In the Model Builder window, expand the Study I $>$ Solver Configurations> Solution I (solI)>Stationary Solver I node, then click Parametric I.

6 In the Settings window for Parametric, click to expand the Continuation section.
7 Select the Tuning of step size check box.
8 In the Initial step size text field, type 1e-2.
9 In the Minimum step size text field, type 1e-6.
10 From the Predictor list, choose Linear.
II In the Model Builder window, click Fully Coupled I.
12 In the Settings window for Fully Coupled, click to expand the Method and Termination section.

13 From the Nonlinear method list, choose Constant (Newton).
14 In the Model Builder window, click Study I.
15 In the Settings window for Study, type Study 1: Penalty in the Label text field.
16 In the Study toolbar, click Compute.

RESULTS

Stress (solid)

In the Settings window for 2D Plot Group, type Displacement (solid) : Penalty in the Label text field.

Surface I

I In the Model Builder window, expand the Results>Displacement (solid): Penalty node, then click Surface I.

2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics> Displacement $>$ Displacement field - m>u - Displacement field, \mathbf{X} component.

3 In the Displacement (solid): Penalty toolbar, click Plot.
4 Click the Zoom Extents button in the Graphics toolbar.

Applied Loads (solid)

I In the Model Builder window, click Applied Loads (solid).
2 In the Settings window for Group, type Applied Loads (solid) : Penalty in the Label text field.

Contact (solid)

I In the Model Builder window, click Contact (solid).
2 In the Settings window for 2D Plot Group, type Contact (solid): Penalty in the Label text field.

Gray Surfaces

I In the Model Builder window, expand the Results>Contact (solid): Penalty node.
2 Right-click Gray Surfaces and choose Enable.
3 In the Contact (solid): Penalty toolbar, click Plot.
4 Click the Zoom Extents button in the Graphics toolbar.
Follow the instructions below to evaluate the horizontal displacement for all three friction cases.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Point Evaluation 1: Penalty in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I: Penalty/ Parametric Solutions I (sol2).

4 From the Parameter selection (para) list, choose Last.
5 From the Table columns list, choose $\mathbf{m u}, \mathbf{K}$.
6 Select Point 8 only.
7 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I $>$ Solid Mechanics $>$ Displacement>Displacement field - m>u Displacement field, X component.

8 Click Evaluate.
Now, solve the model using the augmented Lagrangian contact method.

SOLID MECHANICS (SOLID)

Contact 2

I In the Model Builder window, under Component I (compI)>Solid Mechanics (solid) rightclick Contact I and choose Duplicate.

2 In the Settings window for Contact, locate the Contact Method section.
3 From the Formulation list, choose Augmented Lagrangian.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4 Click Add Study.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

Parametric Sweep

I In the Study toolbar, click Parametric Sweep.
2 In the Settings window for Parametric Sweep, locate the Study Settings section.
3 Click Add.
4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
mu (Friction coefficient)	00.10 .2	

5 Click Add.
6 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
K (Spring stiffness)	1194882563.9	$\mathrm{~N} / \mathrm{m}$

Step I: Stationary
I In the Model Builder window, click Step I: Stationary.
2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (compl)>
Solid Mechanics (solid), Controls spatial frame>Contact I.
5 Click Disable.
6 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
7 Click Add.

8 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
para (Computation parameter)	$1 \mathrm{e}-3 \quad 1$	

9 In the Model Builder window, click Study 2.
10 In the Settings window for Study, type Study 1: Augmented Lagrangian in the Label text field.

In this example the contact forces are very small, so it is necessary so set proper scales for these variables.

Solution 6 (sol6)
I In the Study toolbar, click Show Default Solver.
2 In the Model Builder window, expand the Solution 6 (sol6) node.
3 In the Model Builder window, expand the Study I: Augmented Lagrangian>
Solver Configurations>Solution 6 (sol6)>Dependent Variables I node, then click Friction force (spatial frame) (compl.solid.Tt_apl).

4 In the Settings window for Field, locate the Scaling section.
5 In the Scale text field, type 100.
6 In the Model Builder window, click Contact pressure (compl.solid.Tn_apI).
7 In the Settings window for Field, locate the Scaling section.
8 In the Scale text field, type 1000.
9 In the Model Builder window, expand the Study I: Augmented Lagrangian> Solver Configurations>Solution 6 (sol6)>Stationary Solver I node, then click Parametric I.

10 In the Settings window for Parametric, click to expand the Continuation section.
II Select the Tuning of step size check box.
12 In the Initial step size text field, type 0.1.
I3 In the Maximum step size text field, type 1.
14 In the Study toolbar, click Compute.

RESULTS

Stress (solid)
In the Settings window for 2D Plot Group, type Displacement (solid): Augmented Lagrange in the Label text field.

Surface I

I In the Model Builder window, expand the Results>
Displacement (solid): Augmented Lagrange node, then click Surface I.
2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics> Displacement>Displacement field - $\mathbf{m}>\mathbf{u}$ - Displacement field, \mathbf{X} component.

3 In the Displacement (solid): Augmented Lagrange toolbar, click Plot.
4 Click the Zoom Extents button in the Graphics toolbar.

Applied Loads (solid)

I In the Model Builder window, click Applied Loads (solid).
2 In the Settings window for Group, type Applied Loads (solid): Augmented Lagrange in the Label text field.

Contact (solid)

I In the Model Builder window, click Contact (solid).
2 In the Settings window for 2D Plot Group, type Contact (solid): Augmented Lagrange in the Label text field.

Gray Surfaces

I In the Model Builder window, expand the Results>Contact (solid): Augmented Lagrange node.

2 Right-click Gray Surfaces and choose Enable.
3 In the Contact (solid): Augmented Lagrange toolbar, click Plot.
4 Click the Zoom Extents button in the Graphics toolbar.

Point Evaluation I: Penalty I

I In the Model Builder window, right-click Point Evaluation I: Penalty and choose Duplicate.

2 In the Settings window for Point Evaluation, type Point Evaluation 1: Augmented Lagranage in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I: Augmented Lagrangian/ Parametric Solutions 2 (sol7).
4 Click New Table.
Prepare the model for later use by disabling the second contact feature in the first study (Penalty).

STUDY I: PENALTY

Step I: Stationary
I In the Model Builder window, under Study I: Penalty click Step I: Stationary.
2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (comp I)> Solid Mechanics (solid), Controls spatial frame>Contact 2.

5 Click Disable.

Instability of a Space Arc Frame

Model Definition

In this example you study the lateral deflection of a space frame subjected to concentrated vertical loading at four different points. A small lateral load is applied to break the symmetry of the structure. The model is described in detail in section 6.3 of Ref. 1, where it is called "Space frame subjected to concentrated loading". A schematic description of the frame and loads are shown in Figure 1. There are two types of members used in the frame, marked as 1 and 2 respectively.

Figure 1: Space frame geometry.

GEOMETRY

- Cross section properties of type 1 members are $A_{1}=0.5, I_{y 1}=0.4, I_{z 1}=0.133$.
- Cross section properties of type 2 members are $A_{2}=0.1, I_{y 2}=0.05, I_{z 2}=0.05$.

The local y direction coincides with the global y direction.
The torsional constant is not supplied in the reference, so the common approximation $\mathrm{J}=$ $I_{y}+I_{z}$ is used.

MATERIAL

Linear elastic with $E=4.32 \cdot 10^{5}$ and $\mathrm{G}=1.66 \cdot 10^{5}$.

CONSTRAINTS AND LOADS

- All the base points of the frame are pinned.
- The four corners at the top are subjected to vertical loads P, ranging from 0 to 8.65 , acting downward.
- The front two corners are subjected to lateral loads of $0.001 \cdot P$.

Results and Discussion

With only vertical loads active on the frame this is a symmetric problem. Hence, it is necessary to perturb the symmetry somewhat to induce a controlled instability. The small lateral loads serve this purpose. As an alternative, you could introduce an initial imperfection in the geometry.

Figure 2 below shows the final state of the frame.

```
P(113)=8.64 Line: Total displacement (m)
```


Figure 2: Final state of the deformed frame.
The horizontal displacement of point A on the frame versus the compressive load is shown in Figure 3. Data obtained from Ref. 1 is marked on the same curve. The agreement with the data from the reference is very good.

Figure 3: Load vs. displacement.
The plot of the lateral deflection shows that an instability occurs at a parameter value close to 8.0. In practice, the critical load of an imperfect structure is often significantly lower than that of the ideal structure.

Linear buckling analysis also gives the first critical buckling load as 8.67 which matches well with the critical load obtained from the above analysis. Corresponding buckling mode shape is shown in the Figure 4 below.

Figure 4: First buckling mode.

Reference

1. Z.X. Li and L. Vu-Quoc, A Mixed Co-rotational 3D Beam Element for Arbitrarily Large Rotations, Advanced Steel Construction Vol. 6, No. 2, 767-787, 2010.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/space_frame_instability

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Beam (beam).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Define the load parameter as well as the geometric data.
Parameters I
I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.

3 Click Load from File.

4 Browse to the model's Application Libraries folder and double-click the file space_frame_instability_parameters.txt.

GEOMETRY I

Since the frame is symmetric, create only one quarter of the geometry and use two mirror operations to obtain the full geometry.

Polygon I (poll)

I In the Geometry toolbar, click More Primitives and choose Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 From the Data source list, choose Vectors.
4 In the \mathbf{x} text field, type $-11-12 / 2-12 / 2-12 / 20$.
5 In the y text field, type $-b / 2-b / 2-b / 2-b / 2$.
6 In the \mathbf{z} text field, type 0 h 1 h 1 h 1 .
Line Segment I (|s|)
I In the Geometry toolbar, click More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 Locate the Endpoint section. From the Specify list, choose Coordinates.
5 Locate the Starting Point section. In the \mathbf{x} text field, type $-12 / 2, \mathbf{y}$ to $-\mathrm{b} / 2$, and \mathbf{z} to h 1 .

6 Locate the Endpoint section. In the \mathbf{x} text field, type $-12 / 2$ and \mathbf{z} to h 1 .

Mirror I (mirl)

I In the Geometry toolbar, click Transforms and choose Mirror.
2 Click in the Graphics window and then press Ctrl+A to select both objects.
3 In the Settings window for Mirror, locate the Input section.
4 Select the Keep input objects check box.
5 Locate the Point on Plane of Reflection section. In the \mathbf{x} text field, type -12/2.
6 In the \mathbf{z} text field, type h1.
7 Locate the Normal Vector to Plane of Reflection section. In the \boldsymbol{y} text field, type 1.
8 In the \mathbf{z} text field, type 0.
Mirror 2 (mir2)
I In the Geometry toolbar, click Transforms and choose Mirror.
2 Click in the Graphics window and then press Ctrl+A to select all objects.
3 In the Settings window for Mirror, locate the Input section.
4 Select the Keep input objects check box.
5 Locate the Normal Vector to Plane of Reflection section. In the \mathbf{x} text field, type 1.
6 In the \mathbf{z} text field, type 0.
7 In the Geometry toolbar, click Build All.
8 Click the Go to Default View button in the Graphics toolbar.

BEAM (BEAM)

Linear Elastic Material I

I In the Model Builder window, under Component I (compl)>Beam (beam) click Linear Elastic Material I.

2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.

3 From the Specify list, choose Young's modulus and shear modulus.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	4.32 e 5	Pa	Basic
Shear modulus	G	1.66 e 5	$\mathrm{~N} / \mathrm{m}^{2}$	Bulk modulus and shear modulus
Density	rho	0	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

The density is set to zero since it is not used in the present analysis.

BEAM (BEAM)

Cross Section Data I

I In the Model Builder window, under Component I (compl)>Beam (beam) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Basic Section Properties section.
3 In the A text field, type A1.
4 In the $I_{z z}$ text field, type Iz1.
5 In the $I_{y y}$ text field, type Iy1.
6 In the J text field, type Iy $1+\mathrm{Iz} 1$.

Section Orientation I

I In the Model Builder window, expand the Cross Section Data I node, then click Section Orientation I.

2 In the Settings window for Section Orientation, locate the Section Orientation section.
3 From the Orientation method list, choose Orientation vector.
4 Specify the V vector as

0	X
1	Y
0	Z

Cross Section Data 2

I In the Physics toolbar, click Edges and choose Cross Section Data.
2 Select Edges 3, 5, 9, and 11 only.
3 In the Settings window for Cross Section Data, locate the Basic Section Properties section.

4 In the A text field, type A2.
5 In the $I_{z z}$ text field, type Iz2.
6 In the $I_{y y}$ text field, type Iy2.
7 In the J text field, type Iy2+Iz2.

Section Orientation I

I In the Model Builder window, expand the Cross Section Data 2 node, then click Section Orientation I.

2 In the Settings window for Section Orientation, locate the Section Orientation section.
3 From the Orientation method list, choose Orientation vector.
4 Specify the V vector as
$1 X$
0 Y
0 Z

Pinned I
I In the Physics toolbar, click Points and choose Pinned.
2 Select Points 1, 2, 11, and 12 only.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 Select Points 3, 5, 8, and 10 only.
3 In the Settings window for Point Load, locate the Force section.
4 Specify the \mathbf{F}_{P} vector as

0	x
0	y
$-P$	z

Point Load 2

I In the Physics toolbar, click Points and choose Point Load.
2 Select Points 3 and 8 only.
3 In the Settings window for Point Load, locate the Force section.

4 Specify the \mathbf{F}_{P} vector as

0	x
$0.001 * P$	y
0	z

MESH I

I In the Model Builder window, under Component I (compl) click Mesh I.
2 In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3 From the Element size list, choose Fine.

STUDY I

Step I: Stationary

Use geometric nonlinearity since the problem is expected to have an instability.
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
Set up parametric sweep for the load.
4 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
5 Click Add.
Due to instability, the load increment for $\mathbf{P}>8$ is reduced.
6 In the table, enter the following settings:

Parameter name	Parameter value list
P (Load)	range $(0,0.1,8)$ range $(8.02,0.02,8.65)$

Solution I (soll)
I In the Study toolbar, click Show Default Solver.
Scale the dependent variables appropriately.
2 In the Model Builder window, expand the Solution I (soll) node.
3 In the Model Builder window, expand the Study I>Solver Configurations>
Solution I (sol I)>Dependent Variables I node, then click Displacement field (compl.beam.uLin).

4 In the Settings window for Field, locate the Scaling section.
5 From the Method list, choose Manual.

6 In the Model Builder window, click Rotation field (compl.beam.thLin).
7 In the Settings window for Field, locate the Scaling section.
8 From the Method list, choose Manual.
9 In the Scale text field, type pi/10.
Increase the maximum allowed number of iterations due to the expected instability.
IO In the Model Builder window, expand the Study I>Solver Configurations>
Solution I (solI)>Stationary Solver I node, then click Fully Coupled I.
II In the Settings window for Fully Coupled, click to expand the Method and Termination section.

12 In the Maximum number of iterations text field, type 40.
I3 In the Study toolbar, click Compute.

RESULTS

Stress (beam)

In the Settings window for 3D Plot Group, type Displacement (beam) in the Label text field.

Line I
I In the Model Builder window, expand the Results>Displacement (beam) node, then click Line I.

2 In the Settings window for Line, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Beam>Displacement> beam.disp - Total displacement - m.

3 In the Displacement (beam) toolbar, click Plot.
4 Click the Zoom Extents button in the Graphics toolbar.
Compare load-displacement curve with values from the reference.

ID Plot Group 10

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Load vs. displacement in the Label text field.

3 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
4 In the associated text field, type v .
5 Select the \mathbf{y}-axis label check box.
6 In the associated text field, type P.

7 Click to expand the Title section. From the Title type list, choose Manual.
8 In the Title text area, type Load vs. displacement.

Point Graph I

I Right-click Load vs. displacement and choose Point Graph.
2 Select Point 4 only.
3 In the Settings window for Point Graph, locate the y-Axis Data section.
4 In the Expression text field, type P.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type beam. uLinY.
7 Click to expand the Legends section. Select the Show legends check box.
8 From the Legends list, choose Manual.
9 In the table, enter the following settings:

Legends
 COMSOL

10 Click to expand the Coloring and Style section. In the Width text field, type 3.

Table I

I In the Results toolbar, click Table.
2 In the Settings window for Table, locate the Data section.
3 Click Import.
4 Browse to the model's Application Libraries folder and double-click the file space_frame_instability_data.txt.

5 In the Label text field, type Ref data.

Table Graph I

I In the Model Builder window, right-click Load vs. displacement and choose Table Graph.
2 In the Settings window for Table Graph, locate the Coloring and Style section.
3 Find the Line style subsection. From the Line list, choose None.
4 Find the Line markers subsection. From the Marker list, choose Cycle.
5 In the Number text field, type 20.
6 Click to expand the Legends section. Select the Show legends check box.
7 From the Legends list, choose Manual.

8 In the table, enter the following settings:

Legends
Ref. data

Load vs. displacement
I In the Model Builder window, click Load vs. displacement.
2 In the Settings window for ID Plot Group, locate the Legend section.
3 From the Position list, choose Lower right.
4 In the Load vs. displacement toolbar, click Plot.
5 Click the Zoom Extents button in the Graphics toolbar.
Next, you verify the critical buckling load by performing the linear buckling analysis.

ROOT

In the Home toolbar, click Windows and choose Add Study.

ADD STUDY

I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select
Preset Studies for Selected Physics Interfaces>Linear Buckling.
3 Click Add Study in the window toolbar.
4 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

In the Home toolbar, click Compute.
First default plot from the buckling analysis shows the first buckling mode shape as shown in Figure 4.

RESULTS

Mode Shape (beam)
I In the Mode Shape (beam) toolbar, click Plot.
2 Click the Zoom Extents button in the Graphics toolbar.

Spherical Cap with Central Point Load

Introduction

Buckling is a phenomenon that can cause sudden failure of a structure. A linear buckling analysis predicts the critical buckling load. Such an analysis, however, does not give any information about what happens at loads higher than the critical load. Tracing the solution after the critical load is called a postbuckling analysis.

A spherical cap with a point load at its crown is a common example to study postbuckling analysis of 2D axisymmetric shells. The critical load, snap-through behavior, softening and stiffing effects are the interesting aspects which are studied in this example.

In order to predict the postbuckling behavior, one need to use the nonlinear solver and ramp up the applied load to compute the structure deformation. The buckling load can then be based on when a certain, not acceptable, deformation is reached.

Once the critical buckling load has been reached, it can happen that the structure undergoes a sudden large deformation into a new stable configuration. This is known as a snap-through phenomenon. A snap-through phenomenon cannot be always simulated using prescribed load in a standard nonlinear static solver because the problem becomes numerically singular. In the current example, the displacement at the crown increases monotonically even if the load decreases after a critical point in the snap-through region. Thus, using displacement control is a useful strategy for this example.

Model Definition

The model studied here is a benchmark for a spherical cap subjected to a point load at its crown; see Ref. 1.

- The radius of the spherical cap is $a=10 \mathrm{~m}$ and the thickness is $t h=0.20384 \mathrm{~m}$. The sector angle of the spherical cap is $\pi / 4$ radians.
- The edge/point which is not on axis of revolution is fixed.
- In the study the variation of the crown (center) axial displacement with respect to the applied load is of interest.

Due to the axial symmetry, only the part of the cap which is located at positive rcoordinates is modeled. The full geometry of the spherical cap with loading and boundary conditions is shown in Figure 1.

Figure 1: Problem description.

Results

For a spherical cap, the load versus displacement curve exhibits a critical load which is followed by a gradual snap and further increase in stiffness. Figure 2 and Figure 3 show the total displacement using the Solid Mechanics and Shell interfaces, respectively, at three
different crown displacements. The annotations in the figures shows the corresponding point loads which closely match the benchmarked numerical solutions given in Ref. 1.

Figure 2: Total displacement computed in the Solid Mechanics Interface using 40 mesh elements.

What's important to note in the figures is the snap-through behavior and softening effect after the critical load. The top surface in both figures corresponds to the critical load, while the middle surface is corresponding to the load after the critical point. This shows that although deformation increases the load decreases due to softening after the critical load. The third surface in both figures shows an increase in displacement with an increase in load, indicating an increase in stiffness after the snap through phase.

Figure 4 shows the variation of axial displacement at the crown of the spherical cap versus the applied load. For the Shell interface, three different discretizations (4, 8, 16 mesh elements) are used. For the Solid Mechanics interface 40 mesh elements are used. These discretizations are the same as in Ref. 1.

The results match the values in the reference quite closely. Note however, that these results are reported for certain discretizations and element formulations. There is no target value as such.

Figure 3: Total displacement computing in the Shell Interface using 16 mesh elements.

Figure 4: Applied load versus center displacement.
In Table 1, the results from the Solid Mechanics interface with 40 mesh elements are compared with the reference.

TABLE I: SOLID MECHANICS IN NONDIMENSIONAL FORMAT.

Applied Load	Displacement in reference	Displacement computed
0.320	2.165	2.250
0.584	6.769	6.920
0.975	13.335	13.600
1.624	19.706	20.025
1.808	22.073	22.450
1.758	24.398	24.665
1.962	26.788	27.170
4.699	29.85 I	30.265

In Table 2, Table 3, and Table 4, the results from the Shell interface with 4, 8 and 16 mesh elements respectively, are compared with the reference. Note that with only four elements,
there is no snap through behavior, indicating that the mesh is much to coarse. This is experienced also in the reference, even though different types of shell element formulations are used.

TABLE 2: SHELL RESULTS WITH 4 ELEMENTS IN NONDIMENSIONAL FORMAT.

Applied Load	Displacement target	Displacement computed
0.335	2.367	3.100
0.579	6.921	5.940
0.920	11.614	12.665
1.176	16.423	14.850
1.705	18.964	20.300
2.488	21.393	27.850
2.540	23.659	28.050
3.765	28.541	29.870

TABLE 3: SHELL RESULTS WITH 8 ELEMENTS IN NONDIMENSIONAL FORMAT.

Applied Load	Displacement target	Displacement computed
0.332	2.326	2.440
0.580	6.720	6.775
0.994	13.642	13.760
1.502	18.487	18.815
1.757	20.887	21.240
$1.678(1.722)$	25.668	25.500
3.705	28.680	29.330

TABLE 4: SHELL RESULTS WITH 16 ELEMENTS IN NONDIMENSIONAL FORMAT.

Applied Load	Displacement target	Displacement computed
0.332	2.326	2.445
0.580	6.720	6.800
0.994	13.642	13.800
1.502	18.487	18.945
1.757	20.887	21.640
$1.678(1.717)$	25.668	25.500
3.705	28.680	29.410

Note that the lowest load after the critical load when using a shell formulation is 1.678 in the reference. This value is not reached in the solutions, where the lowest load is predicted as 1.722 and 1.717 with 8 and 16 elements, respectively. A refined Solid Mechanics model actually indicates that the current that the values computed here are more accurate than those reported in the reference.

Notes About the COMSOL Implementation

The main feature of this model is that a limit point instability occurs at the buckling load. Load control would not able to track the unstable solution paths after the limit point, so a displacement control is used since the displacement at the crown increases monotonically.

In this case, where the only load is a point load, it would be possible to directly prescribe the displacement in that point, and then measure the reaction force. If the load was more complex, for example a pressure load, that would not be possible. For this reason, a more general approach is shown here.

To employ a displacement control strategy, a point load at the crown is considered as a global degree of freedom and a global equation in terms of axial displacement at the crown is solved to get the point load value.

For a nonlinear problem experiencing a snap-through behavior there is no general way to determine which controlling parameter to use, so it is necessary to use some physical insight. You need to find a quantity which is monotonically increasing to use as a controlling parameter.

Reference

1. P. Lyons and S. Holsgrove, Finite Element Benchmarks For 2D Beams And Axisymmetric Shells Involving Geometric Non-Linearity, NAFEMS, 2005.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/spherical_cap_with_central_point_load

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D Axisymmetric.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 In the Select Physics tree, select Structural Mechanics>Shell (shell).
5 Click Add.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
a	$10[\mathrm{~m}]$	10 m	Radius of cap
th	$0.203840[\mathrm{~m}]$	0.20384 m	Thickness of cap
EE	$210 e 9[\mathrm{~Pa}]$	2.1 EII Pa	Young's modulus
Nu	0.3	0.3	Poisson's ratio
Rho	7800	7800	Density
disp	$0[\mathrm{~m}]$	0 m	Displacement parameter
meshdist	4	4	Mesh distribution parameter

Define a set of nondimensional variables that will be useful in the postprocessing plots and evaluations.

DEFINITIONS

Variables I

I In the Model Builder window, under Component I (compl) right-click Definitions and choose Variables.

2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit
Fn1	- F1*a/(EE*th^3*2*pi)	
wn1	- w/th	Noscription
Fn2	- F2*a/(EE*th^3*2*pi)	Nondimensional displacement
wn2	- w2/th	Nondimensional force Nondimensional displacement

GEOMETRY I

Circle I (cl)
I In the Geometry toolbar, click Circle.
2 In the Settings window for Circle, locate the Object Type section.
3 From the Type list, choose Curve.
4 Locate the Size and Shape section. In the Sector angle text field, type 45.
5 In the Radius text field, type a+th.
6 Click Build Selected.
7 Locate the Rotation Angle section. In the Rotation text field, type 45.
8 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	th

9 Click Build Selected.
Delete Entities I (dell)
I In the Model Builder window, right-click Geometry I and choose Delete Entities.

2 On the object $\mathbf{c l}$, select Boundaries 1 and 2 only.

3 In the Settings window for Delete Entities, click Build Selected.
Add a same material through a material link for Solid Mechanics and Shell interfaces.

GLOBAL DEFINITIONS

Material I (matl)

In the Model Builder window, under Global Definitions right-click Materials and choose Blank Material.

MATERIALS

Material Link I (matlnk I)

In the Model Builder window, under Component I (compl) right-click Materials and choose More>Material Link.

Material Link 2 (matlnk2)

I Right-click Materials and choose More>Material Link.
2 In the Settings window for Material Link, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.

4 Select Boundary 3 only.

It might be easier to select the correct boundary by using the Selection List window. To open this window, in the Home toolbar click Windows and choose Selection List. (If you are running the cross-platform desktop, you find Windows in the main menu.)

GLOBAL DEFINITIONS

Material I (matl)

I In the Model Builder window, under Global Definitions>Materials click Material I (matI).
2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	EE	Pa	Basic
Poisson's ratio	nu	Nu	I	Basic
Density	rho	Rho	$\mathrm{kg} / \mathrm{m}^{3}$	Basic

DEFINITIONS

Integration I (intopl)

I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, locate the Source Selection section.
3 From the Geometric entity level list, choose Point.
4 Select Point 1 only.
5 Locate the Advanced section. From the Method list, choose Summation over nodes.

SOLID MECHANICS (SOLID)

Fixed Constraint I

I In the Model Builder window, under Component I (compl) right-click Solid Mechanics (solid) and choose Fixed Constraint.

2 Select Boundary 2 only.
Now add a global equation for a point load, so that the crown displacement equals to the prescribed one. For that, you need to show advanced physics options.

3 Click the Show More Options button in the Model Builder toolbar.
4 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Equation-Based Contributions.

5 Click OK.

Global Equations I

I In the Physics toolbar, click Global and choose Global Equations.
2 In the Settings window for Global Equations, locate the Global Equations section.
3 In the table, enter the following settings:

Name	$f(u, u t, u t t, t)$ (I)	Initial value $\left(u_{-} 0\right)(1)$	Initial value $\left(u_{-} t 0\right)(1 / s)$	Description
F1	$\begin{aligned} & \text { intop1(w)- } \\ & \text { disp } \end{aligned}$	0	0	

4 Locate the Units section. Click Select Dependent Variable Quantity.
5 In the Physical Quantity dialog box, type force in the text field.
6 Click Filter.
7 In the tree, select General>Force (N).
8 Click OK.
9 In the Settings window for Global Equations, locate the Units section.
10 Click Select Source Term Quantity.
II In the Physical Quantity dialog box, type disp in the text field.
12 Click Filter.
I3 In the tree, select General>Displacement (m).
14 Click OK.
Point Load (on Axis) I
I In the Physics toolbar, click Points and choose Point Load (on Axis).
2 Select Point 1 only.
3 In the Settings window for Point Load (on Axis), locate the Force section.
4 From the F_{z} list, choose State variable FI (solid/gel).

SHELL (SHELL)

I In the Model Builder window, under Component I (compl) click Shell (shell).
2 In the Settings window for Shell, locate the Boundary Selection section.
3 Click Clear Selection.
4 Select Boundary 3 only.

In order to model the solid midplane using Shell interface assign a proper offset from the Thickness and Offset feature. As shell normal is pointing inward (which can be verified in postprocessing plot) use -th/2 as a physical offset.

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type th.
4 From the Offset definition list, choose Physical offset.
5 In the $z_{\text {offset }}$ text field, type -th/2.

Fixed Constraint I

I In the Physics toolbar, click Points and choose Fixed Constraint.
2 Select Point 3 only.

Global Equations I

I In the Physics toolbar, click Global and choose Global Equations.
2 In the Settings window for Global Equations, locate the Global Equations section.
3 In the table, enter the following settings:

Name	$\mathbf{f (u , u t , u t t , t) (1)}$	Initial value $\left(\mathbf{u} _\mathbf{0}\right)(\mathbf{I})$	Initial value $\left(\mathbf{u} _\mathbf{t 0}\right)(\mathbf{I} \mathbf{s})$	Description
F2	intop1 (w2) - disp	0	0	

4 Locate the Units section. Click Select Dependent Variable Quantity.
5 In the Physical Quantity dialog box, type force in the text field.
6 Click Filter.
7 In the tree, select General>Force (N).
8 Click $\mathbf{O K}$.
9 In the Settings window for Global Equations, locate the Units section.
10 Click Select Source Term Quantity.
II In the Physical Quantity dialog box, type disp in the text field.
12 Click Filter.
13 In the tree, select General>Displacement (m).
14 Click $\mathbf{O K}$.

Point Load (on Axis) I

I In the Physics toolbar, click Points and choose Point Load (on Axis).
2 Select Point 1 only.
3 In the Settings window for Point Load (on Axis), locate the Force section.
4 From the F_{z} list, choose State variable $\mathbf{F 2}$ (shell/gel).
Use different Mesh nodes in order to use different discretizations for Solid Mechanics and Shell interfaces as given in the benchmark example.

MESH 2

In the Mesh toolbar, click Add Mesh.

MESH I

I In the Model Builder window, under Component I (compl)>Meshes click Mesh I.
2 In the Settings window for Mesh, type Mesh: Solid Mechanics in the Label text field.
Mapped I
Right-click Component I (compI)>Meshes>Mesh: Solid Mechanics and choose Mapped.

Distribution I

I In the Model Builder window, right-click Mapped I and choose Distribution.

2 Select Boundaries 3 and 4 only.

3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 40.
5 Click Build Selected.

MESH 2

I In the Model Builder window, under Component I (compl)>Meshes click Mesh 2.
2 In the Settings window for Mesh, type Mesh: Shell in the Label text field.

Edge I

I Right-click Component I (compl)>Meshes>Mesh: Shell and choose More Operations> Edge.

2 Select Boundary 3 only.

Distribution I

I Right-click Edge I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type meshdist.
4 Click Build Selected.

Add a stationary study for Solid Mechanics interface.

ROOT

In the Home toolbar, click Windows and choose Add Study.

ADD STUDY

I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
3 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Shell (shell) interface.
4 Click Add Study in the window toolbar.

STUDY I

I In the Model Builder window, click Study I.
2 In the Settings window for Study, type Study: Solid Mechanics in the Label text field.

Step I: Stationary

I In the Model Builder window, under Study: Solid Mechanics click Step I: Stationary.
2 In the Settings window for Stationary, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
4 Click to expand the Mesh Selection section. In the table, enter the following settings:

Geometry	Mesh
Geometry I	Mesh: Solid Mechanics

5 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
6 Click Add.
7 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
disp (Displacement parameter)	range $(0,-0.01,-6.2)$	m

8 In the Home toolbar, click Compute.
Add a stationary study for Shell interface. Parameterize the mesh discretization using a parametric sweep.

ROOT
Click Windows and choose Add Study.

ADD STUDY
I Go to the Add Study window.
2 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
3 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Solid Mechanics (solid) interface.

4 Click Add Study in the window toolbar.

STUDY 2

I In the Model Builder window, click Study 2.
2 In the Settings window for Study, type Study: Shell in the Label text field.

Parametric Sweep

I In the Study toolbar, click Parametric Sweep.
2 In the Settings window for Parametric Sweep, locate the Study Settings section.
3 Click Add.
4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
meshdist (Mesh distribution parameter)	$4,8,16$	

Step I: Stationary
I In the Model Builder window, click Step I: Stationary.
2 In the Settings window for Stationary, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
4 Locate the Study Extensions section. Select the Auxiliary sweep check box.
5 Click Add.
6 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
disp (Displacement parameter)	range $(0,-0.01,-6.2)$	m

7 In the Study toolbar, click Compute.

RESULTS

Revolution 2D I
I In the Model Builder window, expand the Datasets node, then click Revolution 2D I.

2 In the Settings window for Revolution 2D, click to expand the Revolution Layers section.
3 In the Start angle text field, type 45.
4 In the Revolution angle text field, type -90.
Revolution 2D 2
I In the Model Builder window, click Revolution 2D 2.
2 In the Settings window for Revolution 2D, locate the Revolution Layers section.
3 In the Start angle text field, type 45.
4 In the Revolution angle text field, type -90.
In order to visualize the softening and stiffening effect after the critical point, generate a 3D displacement plot of spherical cap at the critical point, and on unstable and stable part of the equilibrium path after critical point.

Stress, 3D (solid)

I In the Model Builder window, under Results click Stress, 3D (solid).
2 In the Settings window for 3D Plot Group, type Total Displacement, 3D (solid) in the Label text field.

3 Click to expand the Title section. From the Title type list, choose Manual.
4 In the Title text area, type Total Displacement (m).
5 Locate the Plot Settings section. Clear the Plot dataset edges check box.

Surface I

I In the Model Builder window, expand the Results>Total Displacement, 3D (solid) node, then click Surface I.

2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D I.
4 From the Parameter value (disp (m)) list, choose -4.7.
5 Locate the Expression section. In the Expression text field, type solid.disp.

Annotation I

I In the Model Builder window, expand the Surface I node.
2 Right-click Total Displacement, 3D (solid) and choose Annotation.
3 In the Settings window for Annotation, locate the Data section.
4 From the Dataset list, choose Revolution 2D I.
5 From the Parameter value (disp (m)) list, choose -4.7.
6 Locate the Annotation section. In the Text text field, type F1=eval (F1).

7 Select the Allow evaluation of expressions check box.
8 From the Geometry level list, choose Global.
9 Locate the Position section. In the \mathbf{Z} text field, type a-4.7.
$\mathbf{1 0}$ Click to expand the Advanced section. Locate the Coloring and Style section. From the Anchor point list, choose Lower right.

Surface 2

In the Model Builder window, under Results>Total Displacement, 3D (solid) right-click Surface I and choose Duplicate.

Annotation 2

In the Model Builder window, under Results>Total Displacement, 3D (solid) right-click Annotation I and choose Duplicate.

Surface 2

I In the Settings window for Surface, locate the Data section.
2 From the Parameter value (disp (m)) list, choose -5.2.
3 Click to expand the Inherit Style section. From the Plot list, choose Surface I.

Annotation 2

I In the Model Builder window, click Annotation 2.
2 In the Settings window for Annotation, locate the Data section.
3 From the Parameter value (disp (m)) list, choose -5.2.
4 Locate the Position section. In the \mathbf{Z} text field, type a-5.2.

Surface 3

In the Model Builder window, under Results>Total Displacement, 3D (solid) right-click Surface 2 and choose Duplicate.

Annotation 3

In the Model Builder window, under Results>Total Displacement, 3D (solid) right-click Annotation 2 and choose Duplicate.

Surface 3

I In the Settings window for Surface, locate the Data section.
2 From the Parameter value (disp (m)) list, choose -5.8.

Annotation 3

I In the Model Builder window, click Annotation 3.
2 In the Settings window for Annotation, locate the Data section.

3 From the Parameter value (disp (m)) list, choose -5.8.
4 Locate the Position section. In the \mathbf{Z} text field, type a-5.8.
5 In the Total Displacement, 3D (solid) toolbar, click Plot.
6 Click the Zoom Extents button in the Graphics toolbar.
For better visualization change the dataset from Shell I to Study: Shell/Solution 2.
Stress (shell)
I In the Model Builder window, click Stress (shell).
2 In the Settings window for 2D Plot Group, locate the Data section.
3 From the Dataset list, choose Study: Shell/Solution 2 (sol2).
Line I
I In the Model Builder window, expand the Stress (shell) node, then click Line I.
2 In the Settings window for Line, locate the Expression section.
3 In the Expression text field, type shell.mises_max.
4 Locate the Coloring and Style section. In the Radius scale factor text field, type 1.
For better visualization change the dataset in Revolution 2D 2 from Shell I to Study: Shell/

Solution 2.

Revolution 2D 2
I In the Model Builder window, click Revolution 2D 2.
2 In the Settings window for Revolution 2D, locate the Data section.
3 From the Dataset list, choose Study: Shell/Solution 2 (sol2).
Stress, 3D (shell)
I In the Model Builder window, under Results click Stress, 3D (shell).
2 In the Settings window for 3D Plot Group, type Total Displacement, 3D (shell) in the Label text field.

3 Locate the Title section. From the Title type list, choose Manual.
4 In the Title text area, type Total Displacement (m).
5 Locate the Plot Settings section. Clear the Plot dataset edges check box.

Surface I

I In the Model Builder window, expand the Results>Total Displacement, 3D (shell) node, then click Surface I.

2 In the Settings window for Surface, locate the Data section.

3 From the Dataset list, choose Revolution 2D 2.
4 From the Parameter value (disp (m)) list, choose -4.7.
5 Locate the Expression section. In the Expression text field, type shell.disp.
Annotation I
I In the Model Builder window, expand the Surface I node.
2 Right-click Total Displacement, 3D (shell) and choose Annotation.
3 In the Settings window for Annotation, locate the Data section.
4 From the Dataset list, choose Revolution 2D 2.
5 From the Parameter value (disp (m)) list, choose -4.7.
6 Locate the Annotation section. In the Text text field, type F2=eval (F2).
7 Select the Allow evaluation of expressions check box.
8 From the Geometry level list, choose Global.
9 Locate the Position section. In the \mathbf{Z} text field, type a-4.7.
10 Locate the Coloring and Style section. From the Anchor point list, choose Lower right.

Surface 2

In the Model Builder window, under Results>Total Displacement, 3D (shell) right-click Surface I and choose Duplicate.

Annotation 2

In the Model Builder window, under Results>Total Displacement, 3D (shell) right-click Annotation I and choose Duplicate.

Surface 2

I In the Settings window for Surface, locate the Data section.
2 From the Parameter value (disp (m)) list, choose -5.2.
3 Locate the Inherit Style section. From the Plot list, choose Surface I.

Annotation 2

I In the Model Builder window, click Annotation 2.
2 In the Settings window for Annotation, locate the Data section.
3 From the Parameter value (disp (m)) list, choose -5.2.
4 Locate the Position section. In the \mathbf{Z} text field, type a-5.2.

Surface 3

In the Model Builder window, under Results>Total Displacement, 3D (shell) right-click Surface 2 and choose Duplicate.

Annotation 3

In the Model Builder window, under Results>Total Displacement, 3D (shell) right-click Annotation 2 and choose Duplicate.

Surface 3

I In the Settings window for Surface, locate the Data section.
2 From the Parameter value (disp (m)) list, choose -5.8.

Annotation 3

I In the Model Builder window, click Annotation 3.
2 In the Settings window for Annotation, locate the Data section.
3 From the Parameter value (disp (m)) list, choose -5.8.
4 Locate the Position section. In the \mathbf{Z} text field, type a-5.8.
5 In the Total Displacement, 3D (shell) toolbar, click Plot.
6 Click the Zoom Extents button in the Graphics toolbar.
In order to better visualize the shell normal in Thickness and Orientation plot, reduce the number of arrows.

Shell Local System

I In the Model Builder window, expand the Thickness and Orientation (shell) node, then click Shell Local System.

2 In the Settings window for Coordinate System Line, locate the Positioning section.
3 In the Number of arrows text field, type 20.
4 In the Thickness and Orientation (shell) toolbar, click Plot.
Plot a 1D curve showing the relationship between axial displacement and point load at the crown.

ID Plot Group 9
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Load vs. Displacement at Crown in the Label text field.

3 Click to expand the Title section. From the Title type list, choose Manual.
4 In the Title text area, type Load vs. Displacement at Crown.

5 Locate the Legend section. From the Position list, choose Upper left.

Point Graph I

I Right-click Load vs. Displacement at Crown and choose Point Graph.
2 Select Point 1 only.
3 In the Settings window for Point Graph, locate the \boldsymbol{y}-Axis Data section.
4 In the Expression text field, type Fn1.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type wn1.
7 Click to expand the Legends section. Select the Show legends check box.
8 From the Legends list, choose Manual.
9 In the table, enter the following settings:

Legends
Solid Mechanics, 40 Elements

Point Graph 2
I Right-click Point Graph I and choose Duplicate.
2 In the Settings window for Point Graph, locate the Data section.
3 From the Dataset list, choose Study: Shell/Parametric Solutions I (sol3).
4 Locate the y-Axis Data section. In the Expression text field, type Fn2.
5 Locate the x-Axis Data section. In the Expression text field, type wn2.
6 Locate the Legends section. In the table, enter the following settings:

Legends
Shell, 4 Elements
Shell, 8 Elements
Shell, 16 Elements

7 In the Load vs. Displacement at Crown toolbar, click Plot.

Point Evaluation I

I In the Results toolbar, click Point Evaluation.
2 In the Settings window for Point Evaluation, type Solid Mechanics, 40 Elements in the Label text field.

3 Select Point l only.

4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
Fn1	1	Nondimensional force (Solid Mechanics, 40 Elements)
wn1	1	Nondimensional displacement (Solid Mechanics, 40 Elements)

5 Click Evaluate.

Solid Mechanics, 40 Elements I

I Right-click Solid Mechanics, 40 Elements and choose Duplicate.
2 In the Settings window for Point Evaluation, type Shell, 4 Elements in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study: Shell/ Parametric Solutions I (sol3).

4 From the Parameter selection (meshdist) list, choose From list.
5 In the Parameter values (meshdist) list, select 4.
6 From the Table columns list, choose Outer solutions.
7 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
Fn2	1	Nondimensional force (Shell, 4 Elements)
wn2	1	Nondimensional displacement (Shell, 4 Elements)

8 Click Evaluate.

Shell, 4 Elements I

I Right-click Shell, 4 Elements and choose Duplicate.
2 In the Settings window for Point Evaluation, type Shell, 8 Elements in the Label text field.

3 Locate the Data section. In the Parameter values (meshdist) list, select 8.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
Fn2	1	Nondimensional force (Shell, 8 Elements)
wn2	1	Nondimensional displacement (Shell, 8 Elements)

5 Click Evaluate.

Shell, 8 Elements I
I Right-click Shell, 8 Elements and choose Duplicate.
2 In the Settings window for Point Evaluation, type Shell, 16 Elements in the Label text field.

3 Locate the Data section. In the Parameter values (meshdist) list, select $\mathbf{I 6}$.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
Fn2	1	Nondimensional force (Shell, 16 Elements)
wn2	1	Nondimensional displacement (Shell, 16 Elements)

5 Click Evaluate.

Thermally Loaded Beam

Introduction

In the following tutorial, you build and solve a 3D beam model using the 3D Beam interface. This example shows how to model a thermally induced deformation of a beam. Temperature gradients are applied between the top and bottom surfaces as well as the left and right surfaces of the beam. The deformation is compared with the value given by a theoretical solution given in Ref. 1.

Model Definition

GEOMETRY

The geometry consists of one beam. The beam cross-section area is A and the area moment of inertia I. The beam is L long, and the Young's modulus is E.

- Beam length $L=3 \mathrm{~m}$.
- The beam has a square cross section with a side length of 0.04 m giving an area of $A=1.6 \cdot 10^{-3} \mathrm{~m}^{2}$ and an area moment of inertia of $I=0.04^{4} / 12 \mathrm{~m}^{4}$.

material

- Young's modulus $E=210 \mathrm{GPa}$.
- Poisson's ratio $v=0.3$.
- Coefficient of thermal expansion $\alpha=11 \cdot 10^{-6} /{ }^{\circ} \mathrm{C}$.

CONSTRAINTS

- On one end the beam has constrained displacements in all directions and it has the rotation around its length constraint as well to prevent the singular rotational degrees of freedom.
- On the other end the movement perpendicular to the beams length is constrained.

THERMAL LOAD

Figure 1 shows the surface temperature at each corner of the cross section. The temperature varies linearly between each corner. The deformation caused by this
temperature distribution is modeled by specifying the temperature differences across the beam in the local y and z directions.

Figure 1: Geometric properties and thermal loads at corners.

Results and Discussion

Based on Ref. 1, you can compare the maximum deformation in the global z direction with analytical values for a simply supported 2D beam with a temperature difference between the top and the bottom surface. The maximum deformation, according to Ref. 1 is:

$$
w=\frac{\alpha L^{2}}{8 t}\left(T_{2}-T_{1}\right)
$$

where t is the depth of the beam, $0.04 \mathrm{~m}, T_{2}$ is the temperature at the top and T_{1} at the bottom.

The following table shows a comparison of the maximum global z-displacement, calculated with COMSOL Multiphysics, with the theoretical solution.

\mathbf{w}	COMSOL Multiphysics (max)	Analytical
	15.5 mm	15.5 mm

Figure 2 shows the global z-displacement along the beam.

Figure 2: z-displacement along the beam.
The analytical values for the maximum total transverse displacement can be calculated by:

$$
\delta=\sqrt{w^{2}+v^{2}}
$$

where v is the maximum deformation in the global y direction which is calculated in the same way as w.

A comparison of the maximum transverse displacement calculated with COMSOL Multiphysics and the analytical value is shown in the table below.

COMSOL Multiphysics	Analytical
21.9 mm	21.9 mm

Figure 3 shows the total displacement, the total transverse displacement and the axial displacement along the beam.

Figure 3: Camber along the beam.

Reference

1. W. Young, Roark's Formulas for Stress \& Strain, McGraw-Hill, 1989.

Application Library path: Structural_Mechanics_Module/ Verification_Examples/thermally_loaded_beam

Modeling Instructions

From the File menu, choose New.

NE W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Beam (beam).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
a	$0.04[\mathrm{~m}]$	0.04 m	Side length
deltaT	$50[\mathrm{~K}]$	50 K	Temperature difference
Tg	deltaT/a	$1250 \mathrm{~K} / \mathrm{m}$	Temperature gradient
Lb	$3[\mathrm{~m}]$	3 m	Beam length

GEOMETRY I
Polygon I (poll)
I In the Geometry toolbar, click More Primitives and choose Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

$\mathbf{x}(\mathbf{m})$	$\mathbf{y}(\mathbf{m})$	$\mathbf{z (m)}$
0	0	0
$\mathrm{Lb} / 2$	0	0
Lb	0	0

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, click to expand the Material Properties section.
3 In the Material properties tree, select Basic Properties>Coefficient of Thermal Expansion.
4 Click Add to Material.
5 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Coefficient of thermal expansion	alpha_iso ; alphaii $=$ alpha_iso, alphaij $=0$	$11 \mathrm{e}-6$	I / K	Basic
Young's modulus	E	210 e 9	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	7800	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

BEAM (BEAM)

Cross Section Data I

I In the Model Builder window, under Component I (compI)>Beam (beam) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Definition section.
3 From the list, choose Common sections.
4 In the h_{y} text field, type a.
5 In the h_{z} text field, type a.

Section Orientation I

I In the Model Builder window, expand the Cross Section Data I node, then click Section Orientation I.

2 In the Settings window for Section Orientation, locate the Section Orientation section.
3 From the Orientation method list, choose Orientation vector.

4 Specify the V vector as

0 X
1 Y
0 Z
Prescribed Displacement/Rotation I
I In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.
2 Select Point l only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 Select the Prescribed in \boldsymbol{y} direction check box.
6 Select the Prescribed in \mathbf{z} direction check box.
7 Locate the Prescribed Rotation section. From the list, choose Rotation.
8 Select the Free rotation around \boldsymbol{y} direction check box.
9 Select the Free rotation around \mathbf{z} direction check box.

Prescribed Displacement/Rotation 2

I In the Physics toolbar, click Points and choose Prescribed Displacement/Rotation.
2 Select Point 3 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.
4 Select the Prescribed in y direction check box.
5 Select the Prescribed in z direction check box.

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material I.

Thermal Expansion I

I In the Physics toolbar, click Attributes and choose Thermal Expansion.
2 In the Settings window for Thermal Expansion, locate the Model Input section.
3 Click Go to Source.

GLOBAL DEFINITIONS

Default Model Inputs

I In the Model Builder window, under Global Definitions click Default Model Inputs.
2 In the Settings window for Default Model Inputs, locate the Browse Model Inputs section.
3 Find the Expression for remaining selection subsection. In the Volume reference temperature text field, type 0.

BEAM (BEAM)

Thermal Expansion I

I In the Model Builder window, under Component I (comp I)>Beam (beam)> Linear Elastic Material I click Thermal Expansion I.

2 In the Settings window for Thermal Expansion, locate the Model Input section.
3 From the T list, choose User defined. In the associated text field, type 200.
4 Locate the Thermal Bending section. In the $T_{\mathrm{g} y}$ text field, type Tg .
5 In the $T_{\mathrm{g} z}$ text field, type - Tg.

STUDY I

In the Home toolbar, click Compute.

RESULTS

Stress (beam)
In the Settings window for 3D Plot Group, type Displacements in the Label text field.

Line I

I In the Model Builder window, expand the Results>Displacements node, then click Line I.
2 In the Settings window for Line, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Beam>Displacement> beam.disp - Total displacement - m.

3 In the Displacements toolbar, click Plot.

ID Plot Group 9

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Transverse Displacement in the Label text field.

3 Locate the Plot Settings section. Select the \mathbf{y}-axis label check box.

4 In the associated text field, type z displacement (m).

Line Graph I

I Right-click Transverse Displacement and choose Line Graph.
2 In the Settings window for Line Graph, type Transverse displacement (zdirection) in the Label text field.

3 Click in the Graphics window and then press Ctrl+A to select both edges.
4 Locate the \mathbf{y}-Axis Data section. In the Expression text field, type w.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type x.
7 Click to expand the Coloring and Style section. In the Width text field, type 2.
8 In the Transverse Displacement toolbar, click Plot.
ID Plot Group 10
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Displacement in the Label text field.
3 Locate the Plot Settings section. Select the \mathbf{y}-axis label check box.
4 In the associated text field, type displacement (m).
5 Locate the Legend section. From the Position list, choose Center.

Line Graph I

I Right-click Displacement and choose Line Graph.
2 In the Settings window for Line Graph, type Total displacement in the Label text field.
3 Click in the Graphics window and then press Ctrl+A to select both edges.
4 Locate the \boldsymbol{y}-Axis Data section. Select the Description check box.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type x.
7 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Cycle.

8 Find the Line markers subsection. From the Marker list, choose Cycle.
9 In the Width text field, type 2.
10 Click to expand the Legends section. Find the Include subsection. Select the Description check box.

II Clear the Solution check box.
I2 Select the Show legends check box.

Total displacement I

I Right-click Total displacement and choose Duplicate.
2 In the Settings window for Line Graph, type Total transverse displacement in the Label text field.

3 Locate the Selection section. Select the Activate selection toggle button.
4 Locate the \boldsymbol{y}-Axis Data section. In the Expression text field, type sqrt($\left.v^{\wedge} 2+w^{\wedge} 2\right)$.
5 In the Description text field, type Total transverse displacement.

Total transverse displacement I

I Right-click Total transverse displacement and choose Duplicate.
2 In the Settings window for Line Graph, type Axial displacement in the Label text field.
3 Locate the \boldsymbol{y}-Axis Data section. In the Expression text field, type u.
4 In the Description text field, type Axial displacement.
5 In the Displacement toolbar, click Plot.

Thick Plate Stress Analysis

Introduction

This example implements the static stress analysis described in the NAFEMS Test No LE10, "Thick Plate Pressure," found on page 77 in the NAFEMS report Background to Benchmarks (Ref. 1). The computed stress level is compared with the values given in the benchmark report.

Model Definition

The geometry is an ellipse with an ellipse-shaped hole in it. Due to symmetry in load and in geometry, the analysis only includes a quarter of the ellipse.

Figure 1: The thick plate geometry, reduced to a quarter of the ellipse due to symmetry.

material

Isotropic with $E=2.1 \cdot 10^{11} \mathrm{~Pa}, v=0.3$.

LOAD

A distributed load of $10^{6} \mathrm{~Pa}$ on the upper surface pointing in the negative z direction.

constraints

- Symmetry planes, $x=0, y=0$.
- Outer ellipse surface constrained in the x and y directions.
- Midplane on outer ellipse surface constrained in the z direction.

Results

The normal stress σ_{y} is evaluated on the top surface at the inside of the elliptic hole, point D in Figure 1 with coordinate $(2,0,0.6)$. It is in good agreement with the NAFEMS benchmark (Ref. l), considering the coarse mesh. The difference is less than 4%.

RESULT	COMSOL MULTIPHYSICS	NAFEMS (Ref. 1)
$\sigma_{y}($ at $D)$	-5.57 MPa	-5.38 MPa

The y-component of the stress is shown in Figure 2.
Surface: Stress tensor, y component (MPa)

Figure 2: The stress in the y direction.
A note about this example is that the z direction constraint is applied to an edge only. This is a singular constraint, which causes local stresses at the constrained edge. These stresses are unlimited from a theoretical point of view, and in practice the stresses and vertical displacements are strongly mesh dependent. This does not invalidate the possibility to determine stresses at a distance far away from the singular constraint.

Notes About the COMSOL Implementation

In order to get the same mesh as in the original benchmark, some extra lines are drawn in the 2D geometry. As an effect, there will be several domains. This approach is efficient in this simple example, whereas for more complex geometries, the use of Mesh Control Domains should be considered.

Reference

1. G.A.O. Davies, R.T. Fenner, and R.W. Lewis, Background to Benchmarks, NAFEMS, Glasgow, 1993.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/thick_plate

Modeling Instructions

From the File menu, choose New.

NE W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GEOMETRY I

If you do not want to build all the geometry, you can load the geometry sequence from the stored model. In the Model Builder window, under Component I (comp I) right-click Geometry I and choose Insert Sequence. Browse to the model's Application Libraries folder and double-click the file thick_plate.mph. You can then continue to the Add Material section below.

To build the geometry from a scratch, continue here.

Work Plane I (wpl)

In the Geometry toolbar, click Work Plane.
Work Plane I (wpl)>Plane Geometry
Right-click Work Plane I (wpI) and choose Show Work Plane.
Work Plane I (wpl)>Ellipse I (el)
I In the Work Plane toolbar, click Ellipse.
2 In the Settings window for Ellipse, locate the Size and Shape section.
3 In the a-semiaxis text field, type 3.25.
4 In the b-semiaxis text field, type 2.75.
5 In the Sector angle text field, type 90.
6 Click Build Selected.
7 Click the Zoom Extents button in the Graphics toolbar.

Work Plane I (wpl)>Ellipse 2 (e2)

I In the Work Plane toolbar, click Ellipse.
2 In the Settings window for Ellipse, locate the Size and Shape section.
3 In the a-semiaxis text field, type 2.
4 In the Sector angle text field, type 90.
5 Click Build Selected.
Work Plane I (wpl)>Ellipse 3 (e3)
I In the Work Plane toolbar, click Ellipse.
2 In the Settings window for Ellipse, locate the Size and Shape section.
3 In the a-semiaxis text field, type 2.416.
4 In the b-semiaxis text field, type 1.583.
5 In the Sector angle text field, type 90.

6 Click Build Selected.

Work Plane I (wpl)>Difference I (difl)
I In the Work Plane toolbar, click Booleans and Partitions and choose Difference.
2 Select the objects el and e3 only.
3 In the Settings window for Difference, locate the Difference section.
4 Find the Objects to subtract subsection. Select the Activate selection toggle button.

5 Select the object e2 only.

6 Click Build Selected.

Work Plane I (wp I)>Polygon I (poll)
I In the Work Plane toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Object Type section.
3 From the Type list, choose Open curve.
4 Locate the Coordinates section. In the table, enter the following settings:

$x w(\mathrm{~m})$	$\mathrm{yw}(\mathrm{m})$
1.783	2.3
1.165	0.812

Work Plane I (wpl)>Polygon 2 (pol2)
I In the Work Plane toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Object Type section.
3 From the Type list, choose Open curve.
4 Locate the Coordinates section. In the table, enter the following settings:

$\mathrm{xw}(\mathrm{m})$	$\mathrm{yw}(\mathrm{m})$
2.833	1.348
1.783	0.453

5 In the Work Plane toolbar, click Build All.
Work Plane I (wpl)>Plane Geometry
Click the Zoom Extents button in the Graphics toolbar.
Work Plane I (wpl)>Partition Objects I (parl)
I In the Work Plane toolbar, click Booleans and Partitions and choose Partition Objects.
2 Select the object difI only.
3 In the Settings window for Partition Objects, locate the Partition Objects section.
4 Find the Tool objects subsection. Select the Activate selection toggle button.
5 Select the objects poll and pol2 only.

6 Click Build Selected.

Work Plane I (wp I)
In the Model Builder window, click Work Plane I (wpl).

Extrude I (extl)

I In the Geometry toolbar, click Extrude.
2 In the Settings window for Extrude, locate the Distances section.
3 In the table, enter the following settings:

Distances (m)

0.3
0.6

4 Click Build Selected.

5 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$210[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	7850	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

SOLID MECHANICS (SOLID)

Symmetry I

I In the Model Builder window, under Component I (compl) right-click Solid Mechanics (solid) and choose More Constraints>Symmetry.
2 Select Boundaries 1, 4, 8, 11, 40, 41, 49, and 50 only.

Prescribed Displacement I

I In the Physics toolbar, click Boundaries and choose Prescribed Displacement.
2 Select Boundaries 15, 16, 31, 32, 51, and 52 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 Select the Prescribed in y direction check box.

Prescribed Displacement 2

I In the Physics toolbar, click Edges and choose Prescribed Displacement.
2 Select Edges 20, 41, and 72 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in z direction check box.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundaries 7, 14, 23, 30, 39, and 48 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 Specify the \mathbf{F}_{A} vector as

0	x
0	y
$-1 e 6$	z

MESH I

Mapped I

In the Model Builder window, under Component I (compl) right-click Mesh I and choose More Operations>Mapped.

Distribution I
In the Model Builder window, right-click Mapped I and choose Distribution.

Mapped I

Select Boundaries $7,14,23,30,39$, and 48 only.
Distribution I
I In the Model Builder window, click Distribution I.

2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 2.
4 Locate the Edge Selection section. From the Selection list, choose All edges.

5 Click Build Selected.

Swept I

I In the Model Builder window, right-click Mesh I and choose Swept.
2 In the Settings window for Swept, click Build AII.

STUDY I

In the Home toolbar, click Compute.

RESULTS

Point Evaluation I
I In the Results toolbar, click Point Evaluation.
2 Select Point 24 only.
This corresponds to point D in Figure 1.
3 In the Settings window for Point Evaluation, click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I> Solid Mechanics>Stress>Stress tensor (spatial frame) - N/m²>solid.sy - Stress tensor, y component.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
solid.sy	MPa	Stress tensor, y component (COMSOL)
$-5.38[\mathrm{MPa}]$	MPa	Stress tensor, y compoent, (NAFEMS)

5 Click Evaluate.

Stress (solid)

Modify the default surface plot to show the y component of the stress tensor.

Surface I

I In the Model Builder window, expand the Results>Stress (solid) node, then click Surface I.
2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Solid Mechanics>Stress> Stress tensor (spatial frame) - $\mathbf{N} / \mathbf{m}^{\mathbf{2}}>$ solid.sy - Stress tensor, \mathbf{y} component.

3 Locate the Expression section. From the Unit list, choose MPa.

4 In the Stress (solid) toolbar, click Plot.

Instability of Two Contacting Arches

Introduction

This conceptual example shows how to calculate critical points in models with contact. The model consists of two contacting arches modeled with the Shell interface. During loading, the lower arch exhibits a snap-through behavior. The definition of the problem is based on a benchmark example from Ref. 1.

Model Definition

The model geometry consists of an arch and a block as shown in Figure 1. Since the arches are modeled with the Shell interface, a 3D geometry is used. However, a 2D plane strain behavior is intended, and consequently symmetry conditions are applied to all edges in the y direction to suppress any out-of-plane deformation

Figure 1: Model geometry.
Only contact without friction is considered and the penalty contact method is used.
The ends of the upper arch are constrained against displacement in the x direction and subjected to vertical edge loads. The magnitude of the edge loads is controlled by the
monotonically increasing deflection of the upper arch, which makes it possible to track the entire load path, even though the force does not increase monotonically. The ends of the lower arch are fixed.

Results and Discussion

Figure 2 depicts the deformed shape and the von Mises stress distribution at the last step of the simulation. The snap-through of the lower arch is clearly visible. Both arches are represented by a shell dataset that shows both their top and bottom surfaces.

Figure 2: Deformation and von Mises stress at the final step.
Three different load versus deflection curves are shown in Figure 3. The load is represented by a dimensionless load factor, and is plotted against either the mid deflections of the two arches or the average deflection of the ends of the upper arch. Several critical points can be observed. For example, looking at the lower arch, a first limit point is reached for a load factor equal to 107.5 and a deflection of 13 mm . At this point the lower arch becomes unstable and a snap-through occurs. When the deflection reaches 45 mm , the load factor has decreased to 45 . At this point a second limit point is reached, and the model
finds a new stable configuration. After this point the load factor increases with increasing deflection.

Several bifurcation points are also present, indicating the unstable nature of the problem and possible branching of the load path. A first point is, for example, visible already at a deflection of 1 mm , where there is a clear change in the slope of the load-deflection curve.

Figure 3: Load versus deflection curves.
The progressive deformation of the two arches, including the snap-through of the lower arch, is shown in Figure 4 for five values of the continuation parameter. In the figure, it also is clearly visible how the contact problem changes throughout the simulation. Figure 5 shows the contact pressure exerted by the upper arch on the lower arch during the post-critical stage.

Figure 4: Deformation of the model for five different parameter values

Figure 5: Contact pressure acting on the lower arch.

Notes About the COMSOL Implementation

Contact problems are often unstable in their initial configuration. To help the solver find an initial solution, a Spring Foundation is added to the otherwise unconstrained upper arch during the first parameter step.

Modeling the post-critical behavior of a system is not possible by incrementally increasing the boundary load. The unstable behavior is even more pronounced when contact is present. To be able to find all limit points and to track the full load versus deflection curve, a displacement controlled load scheme is used by adding a Global Equation. Here, the magnitude of the edge loads is controlled through the monotonically increasing deflection of the upper arch. Alternatively, the vertical displacement could be prescribed on end points of the upper arch, but this is a less general technique that fails for some cases.

This problem is highly unstable and several branches of the equilibrium path are possible. To suppress these so that a stable solution is obtained, the mid-point of both arches is constrained against sideways displacement through a symmetry condition. By deactivating this constraint, it is possible to study the branching of the equilibrium path.

Reference

1. P. Wriggers, Computational Contact Mechanics, Springer-Verlag, 2006

Application Library path: Structural_Mechanics_Module/ Verification_Examples/two_arches

Modeling Instructions

From the File menu, choose New.

NE W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Shell (shell).
3 Click Add.

4 Click Study.

5 In the Select Study tree, select General Studies>Stationary.
6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file two_arches_parameters.txt.

GEOMETRY I

Work Plane I (wpl)
I In the Geometry toolbar, click Work Plane.
2 In the Settings window for Work Plane, locate the Plane Definition section.
3 From the Plane list, choose xz-plane.
4 Click Show Work Plane.
Work Plane I (wp I)>Circle I (cl)
I In the Work Plane toolbar, click Circle.
2 In the Settings window for Circle, locate the Object Type section.
3 From the Type list, choose Curve.
4 Locate the Size and Shape section. In the Radius text field, type Ri_upper.
5 In the Sector angle text field, type seg_upper.
6 Locate the Position section. In the $\mathbf{y w}$ text field, type Ri_upper.
7 Locate the Rotation Angle section. In the Rotation text field, type-90-seg_upper/2.
8 Click Build Selected.
9 Click the Zoom Extents button in the Graphics toolbar.
Work Plane I (wp I)>Circle 2 (c2)
I In the Work Plane toolbar, click Circle.
2 In the Settings window for Circle, locate the Object Type section.
3 From the Type list, choose Curve.

4 Locate the Size and Shape section. In the Radius text field, type Ri_lower.
5 In the Sector angle text field, type seg_lower.
6 Locate the Position section. In the yw text field, type -Ri_lower.
7 Locate the Rotation Angle section. In the Rotation text field, type 90-seg_lower/2.
8 Click Build Selected.
9 Click the Zoom Extents button in the Graphics toolbar.

Work Plane I (wpl)>Delete Entities I (dell)

I In the Model Builder window, right-click Plane Geometry and choose Delete Entities.
2 On the object $\mathbf{c l}$, select Boundaries 2 and 3 only.
3 On the object c2, select Boundaries 3 and 4 only.
Work Plane I (wpl)>Partition Edges I (parel)
I In the Work Plane toolbar, click Booleans and Partitions and choose Partition Edges.
2 On the object dell(I), select Boundary I only.
Work Plane I (wpl)
I In the Model Builder window, click Work Plane I (wpl).
2 In the Settings window for Work Plane, locate the Unite Objects section.
3 Clear the Unite objects check box.
Extrude I (extl)
I In the Geometry toolbar, click Extrude.
2 In the Settings window for Extrude, locate the Distances section.
3 In the table, enter the following settings:

Distances (m)
d
4 Click Build Selected.
5 Click the Zoom Extents button in the Graphics toolbar.
Explicit Selection I (sell)
I In the Geometry toolbar, click Selections and choose Explicit Selection.
2 In the Settings window for Explicit Selection, type Upper Arch in the Label text field.
3 Locate the Entities to Select section. From the Geometric entity level list, choose Object.
4 Select the object extl(2) only.

5 Locate the Color section. From the Color list, choose Color 4.

6 Click Build Selected.

Upper Arch I (sel2)

I Right-click Upper Arch and choose Duplicate.
2 In the Settings window for Explicit Selection, type Lower Arch in the Label text field.
3 Locate the Entities to Select section. In the list, select extl(2).
4 Select the object extI(I) only.
5 Locate the Color section. From the Color list, choose Color 12.

Form Union (fin)

I In the Model Builder window, under Component I (compl)>Geometry I click Form Union (fin).

2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
3 From the Action list, choose Form an assembly.
4 Click Build Selected.
5 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Geometric Entity Selection section.
3 From the Selection list, choose Lower Arch.
4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$40[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.2	I	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

Material 2 (mat2)

I Right-click Materials and choose Blank Material.
2 In the Settings window for Material, locate the Geometric Entity Selection section.
3 From the Selection list, choose Upper Arch.

4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	$20[\mathrm{GPa}]$	Pa	Basic
Poisson's ratio	nu	0.3	I	Basic
Density	rho	1	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

DEFINITIONS

Average I (aveopl)
I In the Definitions toolbar, click Nonlocal Couplings and choose Average.
2 In the Settings window for Average, locate the Source Selection section.
3 From the Geometric entity level list, choose Point.
4 Select Point 9 only.
Average 2 (aveop2)
I Right-click Average I (aveop I) and choose Duplicate.
2 In the Settings window for Average, locate the Source Selection section.
3 Click Clear Selection.
4 Select Point 3 only.

Average 3 (aveop3)

I Right-click Average 2 (aveop2) and choose Duplicate.
2 In the Settings window for Average, locate the Source Selection section.
3 Click Clear Selection.
4 Select Points 7 and 11 only.

Variables I

I In the Model Builder window, right-click Definitions and choose Variables.
2 In the Settings window for Variables, locate the Variables section.
3 In the table, enter the following settings:

Name	Expression	Unit	Description
disp_upper	aveop1 $(-w)$	m	Upper arch displacement
disp_lower	aveop2(-w)	m	Lower arch displacement
disp_load	aveop3(-w)	m	Average load point displacement

Contact Pair I (pl)

I In the Definitions toolbar, click Pairs and choose Contact Pair.
2 In the Settings window for Pair, locate the Source Boundaries section.
3 From the Selection list, choose Upper Arch.
4 Locate the Destination Boundaries section. From the Selection list, choose Lower Arch.

SHELL (SHELL)

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Shell (shell) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type d.
4 From the Offset definition list, choose Relative offset.
5 In the $z_{\text {reloffset }}$ text field, type -1 .
Symmetry I
I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edges 2, 3, 5, 6, 9, 10, 12, and 13 only.

Prescribed Displacement/Rotation I

I In the Physics toolbar, click Edges and choose Prescribed Displacement/Rotation.
2 Select Edges 8 and 14 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 Select the Prescribed in y direction check box.

Prescribed Displacement/Rotation 2

I In the Physics toolbar, click Edges and choose Prescribed Displacement/Rotation.
2 Select Edges 1 and 7 only.
3 In the Settings window for Prescribed Displacement/Rotation, locate the Prescribed Displacement section.

4 Select the Prescribed in \mathbf{x} direction check box.
5 Select the Prescribed in y direction check box.
6 Select the Prescribed in z direction check box.

7 Locate the Prescribed Rotation section. From the By list, choose Rotation.

Contact I

I In the Physics toolbar, in the Boundary section, click Pairs and choose Contact.
2 In the Settings window for Contact, locate the Pair Selection section.
3 Under Pairs, click Add.
4 In the Add dialog box, select Contact Pair I (pI) in the Pairs list.
5 Click OK.

Edge Load I

I In the Physics toolbar, click Edges and choose Edge Load.
2 Select Edges 8 and 14 only.
3 In the Settings window for Edge Load, locate the Force section.
4 Specify the \mathbf{F}_{L} vector as

0	x
0	y
load*F_ref	z

The dependent variable load will be created in the next step using a global equation.
5 Click the Show More Options button in the Model Builder toolbar.
6 In the Show More Options dialog box, in the tree, select the check box for the node Physics>Equation-Based Contributions.
7 Click OK.
Global Equations I
I In the Physics toolbar, click Global and choose Global Equations.
2 In the Settings window for Global Equations, locate the Global Equations section.
3 In the table, enter the following settings:

Name	$\mathbf{f (u , u t , u t t}$, $\mathbf{t})(\mathbf{I})$	Initial value $(\mathbf{u} \mathbf{0})(\mathbf{I})$	Initial value $\left(\mathbf{u} _\mathbf{t 0}\right)(\mathbf{I} / \mathbf{s})$	Description
load	disp_up per- max_dis p*para	0	0	Load Factor

4 Locate the Units section. Click Select Source Term Quantity.
5 In the Physical Quantity dialog box, type displacement in the text field.

6 Click Filter.

7 In the tree, select General>Displacement (m).
8 Click $\mathbf{0 K}$.
Add a small spring stiffness to the upper arch to stabilize the model during the initial step.

Spring Foundation I

I In the Physics toolbar, click Boundaries and choose Spring Foundation.
2 In the Settings window for Spring Foundation, locate the Spring section.
3 In the \mathbf{k}_{A} text field, type 1e3*(para<0.01).
4 Locate the Boundary Selection section. From the Selection list, choose Upper Arch.
Several possible branches are possible during the snap-through. Adding a constraint to each arch enforces a symmetric and stable solution.

Symmetry 2

I In the Physics toolbar, click Edges and choose Symmetry.
2 Select Edges 4 and 11 only.

MESH I

Mapped I

I In the Model Builder window, under Component I (comp I) right-click Mesh I and choose More Operations>Mapped.

2 In the Settings window for Mapped, locate the Boundary Selection section.
3 From the Selection list, choose All boundaries.

Distribution I

I Right-click Mapped I and choose Distribution.
2 Select Edges 2 and 5 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type n_elem_lower.
Distribution 2
I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Edges 9 and 12 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type n_{-}elem_upper.

5 In the Model Builder window, click Mesh I.
6 In the Settings window for Mesh, click Build All.
7 Click the Zoom Extents button in the Graphics toolbar.

$$
\times 10^{-3} \mathrm{~m}
$$

STUDY I
Step I: Stationary
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Auxiliary sweep check box.
4 Click Add.
5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
para (Load parameter)	range $(0,0.02,1)$	

Solution I (soll)
In the Study toolbar, click Show Default Solver.
Stationary Solver I
I In the Model Builder window, expand the Solution I (soll) node, then click Stationary Solver I.

2 In the Settings window for Stationary Solver, locate the General section.
3 In the Relative tolerance text field, type 0.0005.

Parametric I

I In the Model Builder window, expand the Stationary Solver I node, then click Parametric I.

2 In the Settings window for Parametric, click to expand the Continuation section.
3 Select the Tuning of step size check box.
4 In the Minimum step size text field, type 1e-6.
Stop Condition I
I Right-click Parametric I and choose Stop Condition.
2 In the Settings window for Stop Condition, locate the Stop Expressions section.
3 Click Add.
4 In the table, enter the following settings:

Stop expression	Stop if	Active	Description
comp1. load/250	True $(>=1)$	$\sqrt{ }$	Stop expression 1

5 Locate the Output at Stop section. From the Add solution list, choose Step before stop.

Fully Coupled I

I In the Model Builder window, click Fully Coupled I.
2 In the Settings window for Fully Coupled, click to expand the Method and Termination section.

3 From the Nonlinear method list, choose Constant (Newton).
4 In the Study toolbar, click Compute.

RESULTS

Stress (shell)
I In the Settings window for 3D Plot Group, locate the Plot Settings section.
2 From the Frame list, choose Spatial (x, y, z).
3 In the Stress (shell) toolbar, click Plot.
4 Click the Show Grid button in the Graphics toolbar.
5 Click the Zoom Extents button in the Graphics toolbar.

Contact (shell)

I In the Model Builder window, click Contact (shell).
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Parameter value (para) list, choose 0.6.

Contact I, Pressure

I In the Model Builder window, expand the Contact (shell) node, then click Contact I, Pressure.

2 In the Settings window for Arrow Surface, locate the Coloring and Style section.
3 Select the Scale factor check box.
4 In the associated text field, type 2e-10.

Gray Surfaces

In the Model Builder window, right-click Gray Surfaces and choose Enable.

Animation I

I In the Contact (shell) toolbar, click Animation and choose Player.
2 In the Settings window for Animation, locate the Frames section.
3 From the Frame selection list, choose All.
4 Right-click Animation I and choose Play.
ID Plot Group 6
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Load vs Deflection in the Label text field.

Global I

I Right-click Load vs Deflection and choose Global.
2 In the Settings window for Global, locate the \boldsymbol{y}-Axis Data section.
3 In the table, enter the following settings:

Expression	Unit	Description
disp_upper	mm	Upper arch displacement
disp_lower	mm	Lower arch displacement
disp_load	mm	Average load point displacement

4 Locate the x-Axis Data section. From the Parameter list, choose Expression.
5 In the Expression text field, type load.

6 Click to expand the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Cycle.

Load vs Deflection

I In the Model Builder window, click Load vs Deflection.
2 In the Settings window for ID Plot Group, locate the Plot Settings section.
3 Select the Flip the \mathbf{x} - and \mathbf{y}-axes check box.
4 Locate the Legend section. From the Position list, choose Upper left.
5 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
6 In the associated text field, type Deflection (mm).
7 In the Load vs Deflection toolbar, click Plot.
ID Plot Group 7
I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Deformation in the Label text field.
3 Locate the Data section. From the Parameter selection (para) list, choose Manual.
4 In the Parameter indices (1-46) text field, type range (1, 10, 41).
5 Click to expand the Title section. From the Title type list, choose None.
Line Graph I
I Right-click Deformation and choose Line Graph.
2 Select Edges 2 and 5 only.
3 In the Settings window for Line Graph, locate the \mathbf{y}-Axis Data section.
4 In the Expression text field, type z.
5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
6 In the Expression text field, type x .
7 Click to expand the Coloring and Style section. In the Width text field, type 2.

Line Graph 2

I Right-click Line Graph I and choose Duplicate.
2 In the Settings window for Line Graph, locate the Selection section.

3 Click Clear Selection.

4 Select Edges 9 and 12 only.
5 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.

6 From the Color list, choose Cycle (reset).
Line Graph I
I In the Model Builder window, click Line Graph I.
2 In the Settings window for Line Graph, click to expand the Legends section.
3 Select the Show legends check box.
4 Find the Include subsection. In the Prefix text field, type para = .
5 In the Deformation toolbar, click Plot.
Stress (shell)
Click the Zoom Extents button in the Graphics toolbar.

Heat Generation in a Vibrating Structure

Introduction

When a structure is subjected to vibrations of high frequency, a significant amount of heat can be generated within the structure because of mechanical losses in the material such as, for example, viscoelastic effects.

In this example, you model the slow rise of the temperature in a vibrating beam-like structure. You use a transient heat-transfer problem with source term which represents the heat generation due to mechanical losses. The simulation is based on a structural analysis performed in the frequency domain.

Model Definition

The beam consists of two layers made of aluminum and titanium, respectively, with the corresponding loss factors 0.001 and 0.005 . One end of the beam is fixed, and the other one is subjected to periodic loading in the z direction, which is represented in the frequency domain as $F_{z} \exp (j \omega t)$, where j is the imaginary unit, and the angular frequency is

$$
\omega=2 \pi f
$$

The excitation frequency $f=7767 \mathrm{~Hz}$ and the load magnitude $F_{z}=1.7 \mathrm{MPa}$ are used in this example.

The temperature rise is given by the heat-transfer equation

$$
\rho C_{p} \frac{\partial T}{\partial t}-\nabla \cdot(k \nabla T)=Q_{h}
$$

where k is the thermal conductivity, and the volumetric heat capacity ρC_{p} is independent of the temperature in accordance with the Dulong-Petit law.

Note that T represents the temperature averaged over the time period $2 \pi / \omega$. The heat source

$$
Q_{h}=\frac{1}{2} \omega \eta \operatorname{Real}[\varepsilon: \operatorname{Conj}(\mathrm{C}: \varepsilon)]
$$

presents the internal work of the nonelastic (for example, viscous) forces over the period. In the above expression, η is the loss factor, ε is the strain tensor, and C is the elasticity tensor. The term is computed from a structural analysis performed in the frequency domain.

The initial state at time $t=0$ is stress-free, and the initial temperature is 293.15 K over the entire beam.

Use the following boundary conditions:

- At the fixed end, use the temperature condition $T=293.15 \mathrm{~K}$.
- At the end subjected to periodic force, use the thermal insulation condition.
- The boundary between the layers of different materials is an interior boundary.
- At all other boundaries, use the convective cooling condition:

$$
\mathbf{n} \cdot(-k \nabla T)=h\left(T-T_{\mathrm{ext}}\right)
$$

where $h=5 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$ is the heat transfer coefficient and $T_{\text {ext }}=293.15 \mathrm{~K}$ is the external temperature.

For the simulation, apply a periodic loading in the z direction of magnitude 1.7 MPa and frequency 7767 Hz at the free end of the beam for 2 seconds, keeping the fixed end and the structure environment at a constant temperature of 300 K during the process.

Results and Discussion

Figure 1 displays the temperature distribution at the end of the simulated 2 -second forced vibrations. As the figure shows, the maximum temperature rise in the beam is about 0.2 K .

Figure 1: Temperature increase in the beam after 2 seconds of forced vibrations.

Application Library path: Structural_Mechanics_Module/Thermal-
Structure_Interaction/vibrating_beam

Modeling Instructions

From the File menu, choose New

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Heat Transfer>Heat Transfer in Solids (ht).
3 Click Add.
4 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).

5 Click Add.
6 Click Study.
7 In the Select Study tree, select General Studies>Time Dependent.
8 Click Done.

GEOMETRY I

Block I (blk I)
I In the Geometry toolbar, click Block.
2 In the Settings window for Block, locate the Size and Shape section.
3 In the Width text field, type 0.01.
4 In the Depth text field, type 0.001.
5 In the Height text field, type 0.001.
Block 2 (blk2)
I In the Geometry toolbar, click Block.
2 In the Settings window for Block, locate the Size and Shape section.
3 In the Width text field, type 0.01.
4 In the Depth text field, type 0.001.
5 In the Height text field, type 0.001.
6 Locate the Position section. In the \mathbf{z} text field, type 0.001.
7 In the Model Builder window, click Geometry I.
8 Click Build All Objects.

ADD MATERIAL

I In the Home toolbar, click Add Material to open the Add Material window.
2 Go to the Add Material window.
3 In the tree, select Built-in>Aluminum.
4 Click Add to Component in the window toolbar.
5 In the tree, select Built-in>Titanium beta-2IS.
6 Click Add to Component in the window toolbar.
7 In the Home toolbar, click Add Material to close the Add Material window.

MATERIALS

Aluminum (matl)
I In the Model Builder window, under Component I (compl)>Materials click Aluminum (matl).

2 Select Domain 1 only.
Titanium beta-2 IS (mat2)
I In the Model Builder window, click Titanium beta-2IS (mat2).
2 Select Domain 2 only.

SOLID MECHANICS (SOLID)
You need to set up the Solid Mechanics equation form to frequency-domain, since the study type will be set to time dependent. The time dependent equations should be applied to the heat transfer physics only.

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, click to expand the Equation section.
3 From the Equation form list, choose Frequency domain.
4 From the Frequency list, choose User defined. In the f text field, type 7767.
Fixed Constraint I
I In the Physics toolbar, click Boundaries and choose Fixed Constraint.
2 Select Boundaries 1 and 4 only.

Boundary Load I

I In the Physics toolbar, click Boundaries and choose Boundary Load.
2 Select Boundaries 10 and 11 only.
3 In the Settings window for Boundary Load, locate the Force section.
4 Specify the \mathbf{F}_{A} vector as

0	x
0	y
$1.7[\mathrm{MPa}]$	z

Linear Elastic Material I
In the Model Builder window, click Linear Elastic Material I.

Damping I

I In the Physics toolbar, click Attributes and choose Damping.
2 Select Domain 1 only.
3 In the Settings window for Damping, locate the Damping Settings section.
4 From the Damping type list, choose Isotropic loss factor.
5 From the η_{S} list, choose User defined. In the associated text field, type 0.001.

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material I.
Damping 2
I In the Physics toolbar, click Attributes and choose Damping.
2 Select Domain 2 only.
3 In the Settings window for Damping, locate the Damping Settings section.
4 From the Damping type list, choose Isotropic loss factor.
5 From the η_{S} list, choose User defined. In the associated text field, type 0.005.

HEAT TRANSFER IN SOLIDS (HT)

In the Model Builder window, under Component I (compl) click Heat Transfer in Solids (ht).

Temperature I

I In the Physics toolbar, click Boundaries and choose Temperature.
2 Select Boundaries 1 and 4 only.

Heat Flux I

I In the Physics toolbar, click Boundaries and choose Heat Flux.
2 In the Settings window for Heat Flux, locate the Heat Flux section.
3 Click the Convective heat flux button.
4 In the h text field, type 5.
5 Select Boundaries 2, 3, 5, and 7-9 only.
Heat Source I
I In the Physics toolbar, click Domains and choose Heat Source.
2 In the Settings window for Heat Source, locate the Domain Selection section.
3 From the Selection list, choose All domains.

4 Locate the Heat Source section. From the Q_{0} list, choose Total power dissipation density (solid/lemmI).

This choice models the heat generated by the vibrations in the structure.

MESH I

I In the Model Builder window, under Component I (compl) click Mesh I.
2 In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3 From the Element size list, choose Extra fine.
Swept I
I Right-click Component I (compI)>Mesh I and choose Swept.
2 Click Build AII.

STUDY I

Step 1: Time Dependent

I In the Model Builder window, under Study I click Step I: Time Dependent.
2 In the Settings window for Time Dependent, locate the Study Settings section.
3 In the Times text field, type range $(0,0.05,2)$.
Before computing the solution, generate the default plots.
4 In the Model Builder window, right-click Study I and choose Get Initial Value for Step.

RESULTS

Surface

I In the Model Builder window, expand the Temperature (ht) node, then click Surface.
2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type T-293.15.

STUDY I

Step I: Time Dependent

I In the Model Builder window, under Study I click Step I: Time Dependent.
2 In the Settings window for Time Dependent, click to expand the Results While Solving section.

3 Select the Plot check box.

Solver Configurations

In the Model Builder window, expand the Study I>Solver Configurations node.

Solution I (soll)

You need to enable complex values because they are used in the solid mechanics equations, which you manually reconfigured for the frequency-domain analysis.

I In the Model Builder window, expand the Study I>Solver Configurations>Solution I (solI) node, then click Time-Dependent Solver I.

2 In the Settings window for Time-Dependent Solver, click to expand the Advanced section.
3 Select the Allow complex numbers check box.
4 In the Home toolbar, click Compute.

RESULTS

Temperature (ht)

I Click the Zoom Out button in the Graphics toolbar. The computed solution should closely resemble that shown in Figure 1.

Vibrating Membrane

Introduction

In the following example you compute the natural frequencies of a pretensioned membrane using the 3D Membrane interface. This is an example of "stress stiffening"; where the transverse stiffness of a membrane is directly proportional to the tensile force. The results are compared with the analytical solution.

Model Definition

The model consists of a circular membrane, supported along its outer edge.

GEOMETRY

- Membrane radius, $R=0.25 \mathrm{~m}$
- Membrane thickness, $h=0.2 \mathrm{~mm}$

material

- Young's modulus, $E=200 \mathrm{GPa}$
- Poisson's ratio, $v=0.33$
- Mass density, $\rho=7850 \mathrm{~kg} / \mathrm{m}^{3}$

CONSTRAINTS

The outer edge of the membrane is supported in the transverse direction. Two points have constraints in the in-plane direction in order to avoid rigid body motions.

LOAD

The membrane is pretensioned by in the radial direction with $\sigma_{i}=100 \mathrm{MPa}$, giving a membrane force $T_{0}=20 \mathrm{kN} / \mathrm{m}$.

Results and Discussion

The analytical solution for the natural frequencies of the vibrating membrane given in Ref. 1 is:

$$
\begin{equation*}
f_{i j}=\frac{k_{i j}}{2 \pi R} \sqrt{\frac{T_{0}}{h \rho}} \tag{1}
\end{equation*}
$$

The values $k_{i j}$ are derived from the roots of the Bessel functions of the first kind.

In Table 1 the computed results are compared with the results from Equation 1. The agreement is very good. The mode shapes for the first six modes are shown in Figure 1 through Figure 6. Note that some of the modes have duplicate eigenvalues, which is a common property for structures with symmetries.

TABLE I: COMPARISON BETWEEN ANALYTICAL AND COMPUTED NATURAL FREQUENCIES.

Mode number	Factor	Analytical frequency (Hz)	COMSOL result (Hz)
1	$k_{10}=2.4048$	172.8	172.8
2	$k_{11}=3.8317$	275.3	275.3
3	$k_{11}=3.8317$	275.3	275.3
4	$k_{12}=5.1356$	369.0	369.0
5	$k_{12}=5.1356$	369.0	369.0
6	$k_{20}=5.5201$	396.6	396.7

Eigenfrequency $=172.8 \mathrm{~Hz}$ Surface: Displacement field, Z component (m)

Figure 1: First eigenmode.
Eigenfrequency $=275.33 \mathrm{~Hz}$ Surface: Displacement field, Z component (m)

Figure 2: Second eigenmode.

Eigenfrequency $=275.33 \mathrm{~Hz}$ Surface: Displacement field, Z component (m)

Figure 3: Third eigenmode.
Eigenfrequency $=369.06 \mathrm{~Hz}$ Surface: Displacement field, Z component (m)

Figure 4: Fourth eigenmode.

Eigenfrequency $=369.06 \mathrm{~Hz}$ Surface: Displacement field, Z component (m)

Figure 5: Fifth eigenmode.
Eigenfrequency $=396.72 \mathrm{~Hz} \quad$ Surface: Displacement field, Z component (m)

Figure 6: Sixth eigenmode.

Notes About the COMSOL Implementation

An eigenfrequency simulation with a pre-stressed structure can be simulated in two ways. If stresses are known in advance, it is possible to use an initial stress condition. This is shown in the first study.

In a general case, the prestress is given by some external loading, and is thus the result of a previous step in the solution. Such a study would consist of two steps: One stationary step for computing the prestressed state, and one step for the eigenfrequency. The special study type Prestressed Analysis, Eigenfrequency can be used to set up such a sequence. This is shown in the second study in this example.

Since an unstressed membrane has no stiffness in the transverse direction, it is generally difficult to get an analysis to converge without taking special measures. One such method is shown in the second study: A spring foundation is added during initial loading, and is then removed.

Reference

1. A. Bower, Applied Mechanics of Solids, CRC Press, 2010.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/vibrating_membrane

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Structural Mechanics>Membrane (mbrn).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Eigenfrequency.

6 Click Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 In the table, enter the following settings:

Name	Expression	Value	Description
R	250 [mm]	0.25 m	Radius
thic	0.2 [mm]	2E-4 m	Thickness
T0	100[MPa]*thic	20000 N/m	Pretension force
E1	$200[\mathrm{GPa}$]	2EII Pa	Young's modulus
rho1	7850 [kg/m^3]	$7850 \mathrm{~kg} / \mathrm{m}^{3}$	Density
nu1	0.33	0.33	Poisson's ratio
fct	$\begin{aligned} & \text { sqrt(T0/(thic* } \\ & \text { rho1))/(2*pi*R) } \end{aligned}$	$71.853 \mathrm{l} / \mathrm{s}$	Common factor in natural frequencies
f10	2.4048*fct	172.79 I/s	1st natural frequency
f11	3.8317*fct	275.32 I/s	2nd and 3d natural frequencies
f12	5.1356*fct	$369.01 \mathrm{l} / \mathrm{s}$	4th and 5th natural frequencies
f20	5.5201*fct	396.64 I/s	6th natural frequency

DEFINITIONS
Cylindrical System 2 (sys2)
In the Definitions toolbar, click Coordinate Systems and choose Cylindrical System.

GEOMETRY I

Work Plane I (wpl)
In the Geometry toolbar, click Work Plane.
Work Plane I (wpl)>Plane Geometry
Right-click Work Plane I (wpl) and choose Show Work Plane.
Work Plane I (wpl)>Circle I (cl)
I In the Work Plane toolbar, click Circle.

2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type R.
4 In the Model Builder window, click Geometry I.
5 In the Home toolbar, click Build All.
6 Click the Zoom Extents button in the Graphics toolbar.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	E1	Pa	Basic
Poisson's ratio	nu	nu 1	I	Basic
Density	rho	rho1	$\mathrm{kg} / \mathrm{m}^{3}$	Basic

MEMBRANE (MBRN)

Thickness and Offset I

I In the Model Builder window, under Component I (compl)>Membrane (mbrn) click Thickness and Offset I.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3 In the d text field, type thic.

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material I.

Initial Stress and Strain I

I In the Physics toolbar, click Attributes and choose Initial Stress and Strain.
2 In the Settings window for Initial Stress and Strain, locate the Initial Stress and Strain section.

3 In the N_{0} table, enter the following settings:

T0	0
0	T0

Prescribed Displacement I

I In the Physics toolbar, click Edges and choose Prescribed Displacement.
2 Select all four edges.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in z direction check box.

Fixed Constraint I

I In the Physics toolbar, click Points and choose Fixed Constraint.
2 Select Point 1 only.

Prescribed Displacement 2

I In the Physics toolbar, click Points and choose Prescribed Displacement.
2 Select Point 2 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in y direction check box.

MESH I

I In the Model Builder window, under Component I (compl) click Mesh I.
2 In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3 From the Element size list, choose Fine.

STUDY I

Step 1: Eigenfrequency

I In the Model Builder window, under Study I click Step I: Eigenfrequency.
2 In the Settings window for Eigenfrequency, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
4 In the Home toolbar, click Compute.

RESULTS

Surface I

I In the Model Builder window, expand the Mode Shape (mbrn) node, then click Surface I.
2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type w.

4 In the Mode Shape (mbrn) toolbar, click Plot.
5 Click the Zoom Extents button in the Graphics toolbar.

Mode Shape (mbrn)

I In the Model Builder window, click Mode Shape (mbrn).
2 From the Eigenfrequency list, choose the first frequency at 275.3 Hz .
3 In the Mode Shape (mbrn) toolbar, click Plot.
4 From the Eigenfrequency list, choose the first frequency at 275.3 Hz .
5 In the Mode Shape (mbrn) toolbar, click Plot.
6 From the Eigenfrequency list, choose the first frequency at $\mathbf{3 6 9 . 1} \mathrm{Hz}$.
7 In the Mode Shape (mbrn) toolbar, click Plot.
8 From the Eigenfrequency list, choose the first frequency at 369.1 Hz .
9 In the Mode Shape (mbrn) toolbar, click Plot.
10 In the Settings window for 3D Plot Group, locate the Data section.
II From the Eigenfrequency $(\mathbf{H z})$ list, choose $\mathbf{3 9 6 . 7 2}$.
I2 In the Mode Shape (mbrn) toolbar, click Plot.
Now, prepare a second study where the prestress is instead computed from an external load.

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Eigenfrequency, Prestressed.

4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

MEMBRANE (MBRN)

Edge Load I

I In the Physics toolbar, click Edges and choose Edge Load.
2 Select all four edges.
3 In the Settings window for Edge Load, locate the Coordinate System Selection section.
4 From the Coordinate system list, choose Cylindrical System 2 (sys2).

5 Locate the Force section. Specify the \mathbf{F}_{L} vector as
TO r

0 phi
0 a
Add a spring with an arbitrary small stiffness in order to suppress the out-of-plane singularity of the unstressed membrane.

Spring Foundation I

I In the Physics toolbar, click Boundaries and choose Spring Foundation.
2 Select Boundary 1 only.
3 In the Settings window for Spring Foundation, locate the Spring section.
4 From the list, choose Diagonal.
5 In the \mathbf{k}_{A} table, enter the following settings:

0	0	0
0	0	0
0	0	10

Switch off the initial stress, which should not be part of the second study. In the eigenfrequency step, the stabilizing spring support must also be removed.

STUDY 2

Step I: Stationary

I In the Model Builder window, under Study 2 click Step I: Stationary.
2 In the Settings window for Stationary, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
4 Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.

5 In the Physics and variables selection tree, select Component I (compl)> Membrane (mbrn), Controls spatial frame>Linear Elastic Material I> Initial Stress and Strain I.

6 Click Disable.
Step 2: Eigenfrequency
I In the Model Builder window, click Step 2: Eigenfrequency.

2 In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.

3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (compl)> Membrane (mbrn), Controls spatial frame>Linear Elastic Material l> Initial Stress and Strain I and Component I (compl)>Membrane (mbrn), Controls spatial frame>Spring Foundation I.

5 Click Disable.
6 In the Home toolbar, click Compute.

RESULTS

Mode Shape (mbrn) I

The eigenfrequencies computed using this more general approach are the same as before, except some small numerical differences.

To make Study I behave as when it was first created, the features added for Study $\mathbf{2}$ must be disabled.

STUDY I

Solver Configurations

I In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.

2 Select the Modify model configuration for study step check box.
3 In the Physics and variables selection tree, select Component I (comp I)> Membrane (mbrn), Controls spatial frame>Edge Load I and Component I (compl)> Membrane (mbrn), Controls spatial frame>Spring Foundation I.
4 Click Disable.

Vibrating String

Introduction

In the following example you compute the natural frequencies of a pretensioned string using the 2D Truss interface. This is an example of "stress stiffening". In fact the transverse stiffness of truss elements is directly proportional to the tensile force.

Strings made of piano wire have an extremely high yield limit, thus enabling a wide range of pretension forces.

The results are compared with the analytical solution.

Model Definition

The finite element idealization consists of a single line. The diameter of the wire is irrelevant for the solution of this particular problem, but it must still be given.

GEOMETRY

- String length, $L=0.5 \mathrm{~m}$
- Cross section diameter $1.0 \mathrm{~mm} ; A=0.785 \mathrm{~mm}^{2}$

material

- Young's modulus, $E=210 \mathrm{GPa}$
- Poisson's ratio, $v=0.31$
- Mass density, $\rho=7850 \mathrm{~kg} / \mathrm{m}^{3}$

CONSTRAINTS

Both ends of the wire are fixed.

LOAD

The wire is pretensioned to $\sigma_{\mathrm{ni}}=1520 \mathrm{MPa}$.

Results and Discussion

The analytical solution for the natural frequencies of the vibrating string (Ref. 1) is

$$
\begin{equation*}
f_{k}=\frac{k}{2 L} \sqrt{\frac{\sigma_{\mathrm{ni}}}{\rho}} \tag{1}
\end{equation*}
$$

The pretensioning stress σ_{ni} in this example is tuned so that the first natural frequency is Concert A; 440 Hz .

In Table 1 the computed results are compared with the results from Equation 1. The agreement is very good. The accuracy decreases with increasing complexity of the mode shape, because the possibility for the relatively coarse mesh to describe such a shape is limited. The mode shapes for the first three modes are shown in Figure 1 through Figure 3.

TAbLE I: COMPARISON BETWEEN ANALYTICAL AND COMPUTED NATURAL FREQUENCIES.

Mode number	Analytical frequency (Hz)	COMSOL result (Hz)
1	440.0	440.1
2	880.0	880.6
3	1320	1322
4	1760	1765
5	2200	2209

Figure 1: First eigenmode.

Figure 2: Second eigenmode.

Figure 3: Third eigenmode.

Notes About the COMSOL Implementation

In this example, the stresses are known in advance, so it is possible to use an initial stress condition. This is shown in the first study.

In a general case, the prestress is given by some external loading. The structural response of to this loading needs to be calculated and incorporated into the structure before the eigenfrequency can be computed. Such a study therefore consists of two steps: One stationary step for computing the prestressed state, and one step for the eigenfrequency. The special study type Prestressed Analysis, Eigenfrequency can be used to set up such a sequence. This is shown in the second study in this example.

Since an unstressed string has no stiffness in the transverse direction, it is generally difficult to get an analysis to converge without taking special measures. One such method is shown in the second study: A spring foundation is added during initial loading, and is then removed.

You must switch on geometrical nonlinearity in the study in order to capture effects of prestress. This is done automatically when a study of the type Prestressed Analysis, Eigenfrequency is used.

Reference

1. R. Knobel, An Introduction to the Mathematical Theory of Waves, The American
Mathematical Society, 2000 .

Application Library path: Structural_Mechanics_Module/
Verification_Examples/vibrating_string

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD
I In the Model Wizard window, click 2D.
2 In the Select Physics tree, select Structural Mechanics>Truss (truss).
3 Click Add.
4 Click Study.
5 In the Select Study tree, select General Studies>Eigenfrequency.
6 Click Done.

GEOMETRY I

Polygon I (poll)
I In the Geometry toolbar, click Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

$\mathbf{x}(\mathbf{m})$	$\boldsymbol{y}(\mathbf{m})$
0	0
0.5	0

4 Click Build All Objects.

MATERIALS

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	210 e 9	Pa	Basic
Poisson's ratio	nu	0.31	I	Basic
Density	rho	7850	$\mathrm{~kg} / \mathrm{m}^{3}$	Basic

TRUSS (TRUSS)

Cross Section Data I

I In the Model Builder window, under Component I (comp I)>Truss (truss) click Cross Section Data I.

2 In the Settings window for Cross Section Data, locate the Cross Section Data section.
3 In the A text field, type pi/4*0.001^2.

Pinned I

I In the Physics toolbar, click Points and choose Pinned.
2 In the Settings window for Pinned, locate the Point Selection section.
3 From the Selection list, choose All points.
The straight edge constraint must be removed because the vibration gives the string a curved shape.

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material I.

Initial Stress and Strain I

I In the Physics toolbar, click Attributes and choose Initial Stress and Strain.
2 In the Settings window for Initial Stress and Strain, locate the Initial Stress and Strain section.

3 In the $\sigma_{n 0}$ text field, type 1520 e 6.

MESH I

Edge I
I In the Model Builder window, under Component I (compl) right-click Mesh I and choose More Operations>Edge.

2 In the Settings window for Edge, locate the Boundary Selection section.
3 From the Selection list, choose All boundaries.

Size

I In the Model Builder window, click Size.
2 In the Settings window for Size, locate the Element Size section.
3 Click the Custom button.
4 Locate the Element Size Parameters section. In the Maximum element size text field, type 0.01 .

This setting gives 50 elements for the mesh that COMSOL Multiphysics generates when you solve the model.

The stiffness caused by the prestress is a nonlinear effect, so geometric nonlinearity must be switched on.

STUDY I

Step I: Eigenfrequency

I In the Model Builder window, under Study I click Step I: Eigenfrequency.
2 In the Settings window for Eigenfrequency, locate the Study Settings section.
3 Select the Include geometric nonlinearity check box.
4 In the Home toolbar, click Compute.

RESULTS

Mode Shape (truss)
I Click the Zoom Extents button in the Graphics toolbar.
The default plot shows the displacement for the first eigenmode.
Line I
I In the Model Builder window, expand the Mode Shape (truss) node, then click Line I.
2 In the Settings window for Line, locate the Coloring and Style section.
3 In the Radius scale factor text field, type 2.

Mode Shape (truss)

I Click the Zoom Extents button in the Graphics toolbar.
2 In the Model Builder window, click Mode Shape (truss).
3 In the Settings window for 2D Plot Group, locate the Data section.
4 From the Eigenfrequency (Hz) list, choose $\mathbf{8 8 0 . 6 5}$.
This corresponds to the second eigenmode.
5 In the Mode Shape (truss) toolbar, click Plot.
6 Click the Zoom Extents button in the Graphics toolbar.
7 From the Eigenfrequency $(\mathbf{H z})$ list, choose I322.I.
This is the third eigenmode.
8 In the Mode Shape (truss) toolbar, click Plot.
9 Click the Zoom Extents button in the Graphics toolbar.
Now, prepare a second study where the prestress is instead computed from an external load. The pinned condition in the right end must then be replaced by a force.

TRUSS (TRUSS)

Pinned 2

I In the Physics toolbar, click Points and choose Pinned.
2 Select Point 1 only.

Prescribed Displacement I

I In the Physics toolbar, click Points and choose Prescribed Displacement.
2 Select Point 2 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in y direction check box.

Point Load I

I In the Physics toolbar, click Points and choose Point Load.
2 Select Point 2 only.
3 In the Settings window for Point Load, locate the Force section.

4 Specify the \mathbf{F}_{P} vector as

1520 [MPa] *truss.area	x
0	y

Add a spring with an arbitrary small stiffness in order to suppress the out-of-plane singularity of the unstressed wire.

Spring Foundation I
I In the Physics toolbar, click Boundaries and choose Spring Foundation.
2 Select Boundary 1 only.
3 In the Settings window for Spring Foundation, locate the Spring section.
4 From the list, choose Diagonal.
5 In the \mathbf{k}_{L} table, enter the following settings:

0	0
0	10

ADD STUDY

I In the Home toolbar, click Add Study to open the Add Study window.
2 Go to the Add Study window.
3 Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Eigenfrequency, Prestressed.

4 Click Add Study in the window toolbar.
5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

Step I: Stationary

Switch off the initial stress and double-sided pinned condition, which should not be part of the second study. In the eigenfrequency step, the stabilizing spring support must also be removed.

I In the Settings window for Stationary, locate the Physics and Variables Selection section.
2 Select the Modify model configuration for study step check box.
3 In the Physics and variables selection tree, select Component I (compI)>Truss (truss)> Linear Elastic Material I>Initial Stress and Strain I and Component I (compI)> Truss (truss) $>$ Pinned I.

4 Click Disable.

Step 2: Eigenfrequency

I In the Model Builder window, click Step 2: Eigenfrequency.
2 In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.

3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (compl)>Truss (truss)> Linear Elastic Material I>Initial Stress and Strain I, Component I (compI)>Truss (truss)> Pinned I, and Component I (comp I) $>$ Truss (truss) $>$ Spring Foundation I.

5 Click Disable.
6 In the Home toolbar, click Compute.

RESULTS

Mode Shape (truss) I
The eigenfrequencies computed using this more general approach are close to those computed in the previous step.

Line I
I In the Model Builder window, expand the Mode Shape (truss) I node, then click Line I.
2 In the Settings window for Line, locate the Coloring and Style section.
3 In the Radius scale factor text field, type 2.
To make Study I behave as when it was first created, the features added for Study $\mathbf{2}$ must be disabled.

STUDY I

Step I: Eigenfrequency
I In the Model Builder window, under Study I click Step I: Eigenfrequency.
2 In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.

3 Select the Modify model configuration for study step check box.
4 In the Physics and variables selection tree, select Component I (compl)>Truss (truss)> Pinned 2, Component I (comp I)>Truss (truss)>Prescribed Displacement I, Component I (comp I) >Truss (truss)>Point Load I, and Component I (compI)> Truss (truss)>Spring Foundation I.

5 Click Disable.

